
## Aimee Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5473132/publications.pdf Version: 2024-02-01



AIMEE SHEN

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A security check that monitors cell morphogenesis. Trends in Microbiology, 2022, , .                                                                                                 | 3.5 | О         |
| 2  | Editorial overview: Gene regulation mechanisms governing Clostridioides difficile physiology and virulence. Current Opinion in Microbiology, 2022, 67, 102139.                       | 2.3 | 0         |
| 3  | Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of<br>Labor between Virulence and Transmission Gene Expression. MSphere, 2022, 7, . | 1.3 | 10        |
| 4  | Identification of a Novel Regulator of Clostridioides difficile Cortex Formation. MSphere, 2021, 6, e0021121.                                                                        | 1.3 | 6         |
| 5  | A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. PLoS Genetics, 2021, 17, e1009791.                                          | 1.5 | 8         |
| 6  | Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nature Microbiology, 2020, 5, 166-180.   | 5.9 | 75        |
| 7  | Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. Journal of Bacteriology, 2020, 202, .                                                                      | 1.0 | 9         |
| 8  | <i>Clostridioides difficile</i> Spore Formation and Germination: New Insights and Opportunities for<br>Intervention. Annual Review of Microbiology, 2020, 74, 545-566.               | 2.9 | 42        |
| 9  | Translation of Microbiota Short-Chain Fatty Acid Mechanisms Affords Anti-infective Acyl-Salicylic<br>Acid Derivatives. ACS Chemical Biology, 2020, 15, 1141-1147.                    | 1.6 | 7         |
| 10 | Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission. Clinics in Colon<br>and Rectal Surgery, 2020, 33, 058-066.                                     | 0.5 | 4         |
| 11 | Differential effects of â€~resurrecting' Csp pseudoproteases during <i>Clostridioides difficile</i> spore germination. Biochemical Journal, 2020, 477, 1459-1478.                    | 1.7 | 5         |
| 12 | Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile.<br>Anaerobe, 2019, 60, 102073.                                                     | 1.0 | 9         |
| 13 | The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genetics, 2019, 15, e1008224.                   | 1.5 | 32        |
| 14 | Expanding the Clostridioides difficile Genetics Toolbox. Journal of Bacteriology, 2019, 201, .                                                                                       | 1.0 | 5         |
| 15 | SpoIVA-SipL Complex Formation Is Essential for <i>Clostridioides difficile</i> Spore Assembly. Journal of Bacteriology, 2019, 201, .                                                 | 1.0 | 19        |
| 16 | Sporulation and Germination in Clostridial Pathogens. Microbiology Spectrum, 2019, 7, .                                                                                              | 1.2 | 60        |
| 17 | Genome-wide detection of conservative site-specific recombination in bacteria. PLoS Genetics, 2018, 14, e1007332.                                                                    | 1.5 | 41        |
| 18 | <i>Clostridium difficile</i> Lipoprotein GerS Is Required for Cortex Modification and Thus Spore<br>Germination. MSphere, 2018, 3, .                                                 | 1.3 | 33        |

AIMEE SHEN

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Differential requirements for conserved peptidoglycan remodeling enzymes during <i>Clostridioides<br/>difficile</i> spore formation. Molecular Microbiology, 2018, 110, 370-389.                                                                                             | 1.2 | 24        |
| 20 | A <i>Clostridium difficile</i> -Specific, Gel-Forming Protein Required for Optimal Spore Germination.<br>MBio, 2017, 8, .                                                                                                                                                    | 1.8 | 37        |
| 21 | The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore<br>Formation. MSphere, 2017, 2, .                                                                                                                                               | 1.3 | 40        |
| 22 | Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination.<br>Journal of Bacteriology, 2017, 199, .                                                                                                                                   | 1.0 | 27        |
| 23 | Levels of L-malate and other low molecular weight metabolites in spores of Bacillus species and Clostridium difficile. PLoS ONE, 2017, 12, e0182656.                                                                                                                         | 1.1 | 9         |
| 24 | Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase.<br>Journal of Bacteriology, 2016, 198, 1694-1707.                                                                                                                     | 1.0 | 58        |
| 25 | Inducing and Quantifying Clostridium difficile Spore Formation. Methods in Molecular Biology, 2016, 1476, 129-142.                                                                                                                                                           | 0.4 | 32        |
| 26 | Characterization of the Clostridium difficile volatile metabolome using comprehensive<br>two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography B:<br>Analytical Technologies in the Biomedical and Life Sciences, 2016, 1039, 8-16. | 1.2 | 27        |
| 27 | Editorial: Signals to sociality: how microbial communication fashions communities. FEMS<br>Microbiology Reviews, 2016, 40, 795-797.                                                                                                                                          | 3.9 | 0         |
| 28 | Effects of High-Pressure Treatment on Spores of Clostridium Species. Applied and Environmental Microbiology, 2016, 82, 5287-5297.                                                                                                                                            | 1.4 | 32        |
| 29 | Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie, 2016, 122, 243-254.                                                                                                                                                      | 1.3 | 60        |
| 30 | Regulation of Clostridium difficile Spore Formation by the SpolIQ and SpolIIA Proteins. PLoS Genetics, 2015, 11, e1005562.                                                                                                                                                   | 1.5 | 55        |
| 31 | Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS<br>Pathogens, 2015, 11, e1005239.                                                                                                                                           | 2.1 | 66        |
| 32 | Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Current Opinion in Microbiology, 2015, 24, 88-95.                                                                                                                                           | 2.3 | 116       |
| 33 | <scp>SpoIIID</scp> â€mediated regulation of σ <scp><sup>K</sup></scp> function during<br><scp><i>C</i></scp> <i>lostridium difficile</i> sporulation. Molecular Microbiology, 2015, 95, 189-208.                                                                             | 1.2 | 66        |
| 34 | Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman<br>Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 2015, 197,<br>2361-2373.                                                      | 1.0 | 60        |
| 35 | A small-molecule antivirulence agent for treating <i>Clostridium difficile</i> infection. Science<br>Translational Medicine, 2015, 7, 306ra148.                                                                                                                              | 5.8 | 117       |
| 36 | A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and<br>Germination. PLoS Pathogens, 2015, 11, e1005157.                                                                                                                                 | 2.1 | 53        |

AIMEE SHEN

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends in Microbiology, 2014, 22, 406-416.                       | 3.5 | 346       |
| 38 | Simplified Protein Purification Using an Autoprocessing, Inducible Enzyme Tag. Methods in Molecular<br>Biology, 2014, 1177, 59-70.                             | 0.4 | 2         |
| 39 | Global Analysis of the Sporulation Pathway of Clostridium difficile. PLoS Genetics, 2013, 9, e1003660.                                                         | 1.5 | 219       |
| 40 | Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore<br>Germination. PLoS Pathogens, 2013, 9, e1003165.                      | 2.1 | 99        |
| 41 | SpoIVA and SipL Are Clostridium difficile Spore Morphogenetic Proteins. Journal of Bacteriology, 2013, 195, 1214-1225.                                         | 1.0 | 129       |
| 42 | <i>Clostridium difficile</i> Toxins: Mediators of Inflammation. Journal of Innate Immunity,<br>2012, 4, 149-158.                                               | 1.8 | 164       |
| 43 | Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nature<br>Structural and Molecular Biology, 2011, 18, 364-371. | 3.6 | 66        |
| 44 | Rational Design of Inhibitors and Activity-Based Probes Targeting Clostridium difficile Virulence<br>Factor TcdB. Chemistry and Biology, 2010, 17, 1201-1211.  | 6.2 | 58        |
| 45 | Autoproteolytic Activation of Bacterial Toxins. Toxins, 2010, 2, 963-977.                                                                                      | 1.5 | 16        |
| 46 | Allosteric regulation of protease activity by small molecules. Molecular BioSystems, 2010, 6, 1431.                                                            | 2.9 | 41        |
| 47 | Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin.<br>Nature Chemical Biology, 2009, 5, 469-478.              | 3.9 | 77        |
| 48 | Simplified, Enhanced Protein Purification Using an Inducible, Autoprocessing Enzyme Tag. PLoS ONE, 2009, 4, e8119.                                             | 1.1 | 74        |
| 49 | Friend or Foe? Turning a Host Defense Protein Into a Pathogen's Accomplice. Chemistry and Biology, 2008, 15, 879-880.                                          | 6.2 | 1         |
| 50 | Sporulation and Germination in Clostridial Pathogens. , 0, , 903-926.                                                                                          |     | 2         |