Vilma Ducman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5473096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of façade panels based on alkaliâ€activated waste mineral wool, their characterization, and durability aspects. International Journal of Applied Ceramic Technology, 2022, 19, 1227-1234.	1.1	4
2	Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 99.	1.3	10
3	Microstructural Characterization of Alkali-Activated Composites of Lightweight Aggregates (LWAs) Embedded in Alkali-Activated Foam (AAF) Matrices. Polymers, 2022, 14, 1729.	2.0	5
4	Evaluation of Sediments from the River Drava and Their Potential for Further Use in the Building Sector. Materials, 2022, 15, 4303.	1.3	5
5	Evaluation of locally available amorphous waste materials as a source for alternative alkali activators. Ceramics International, 2021, 47, 4864-4873.	2.3	16
6	Alkali Activation of Metallurgical Slags: Reactivity, Chemical Behavior, and Environmental Assessment. Materials, 2021, 14, 639.	1.3	19
7	The Effect of Crystalline Waterproofing Admixtures on the Self-Healing and Permeability of Concrete. Materials, 2021, 14, 1860.	1.3	11
8	Mechanical, microstructural and mineralogical evaluation of alkali-activated waste glass and stone wool. Ceramics International, 2021, 47, 15102-15113.	2.3	19
9	High temperature resistant fly-ash and metakaolin-based alkali-activated foams. Ceramics International, 2021, 47, 25105-25120.	2.3	31
10	Life Cycle Assessment of Prefabricated Geopolymeric Façade Cladding Panels Made from Large Fractions of Recycled Construction and Demolition Waste. Materials, 2020, 13, 3931.	1.3	28
11	Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 2020, 262, 120475.	3.2	9
12	Optimization and mechanical-physical characterization of geopolymers with Construction and Demolition Waste (CDW) aggregates for construction products. Construction and Building Materials, 2020, 264, 120158.	3.2	26
13	Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles. Materials, 2020, 13, 3717.	1.3	14
14	Influence of Particle Size on Compressive Strength of Alkali Activated Refractory Materials. Materials, 2020, 13, 2227.	1.3	11
15	Particle size manipulation as an influential parameter in the development of mechanical properties in electric arc furnace slag-based AAM. Ceramics International, 2019, 45, 22632-22641.	2.3	25
16	Potential of Green Ceramics Waste for Alkali Activated Foams. Materials, 2019, 12, 3563.	1.3	9
17	Production of Lightweight Alkali Activated Mortars Using Mineral Wools. Materials, 2019, 12, 1695.	1.3	26
18	The Potential of Ladle Slag and Electric Arc Furnace Slag use in Synthesizing Alkali Activated Materials; the Influence of Curing on Mechanical Properties. Materials, 2019, 12, 1173.	1.3	40

VILMA DUCMAN

#	Article	IF	CITATIONS
19	Aggregates Obtained by Alkali Activation of Fly Ash: The Effect of Granulation, Pelletization Methods and Curing Regimes. Materials, 2019, 12, 776.	1.3	9
20	Impacts of Casting Scales and Harsh Conditions on the Thermal, Acoustic, and Mechanical Properties of Indoor Acoustic Panels Made with Fiber-Reinforced Alkali-Activated Slag Foam Concretes. Materials, 2019, 12, 825.	1.3	19
21	Efficiency of Novel Photocatalytic Coating and Consolidants for Protection of Valuable Mineral Substrates. Materials, 2019, 12, 521.	1.3	4
22	Use of fly ash and phosphogypsum for the synthesis of belite-sulfoaluminate clinker. Materiales De Construccion, 2019, 69, 176.	0.2	15
23	Draining capability of single-sized pervious concrete. Construction and Building Materials, 2018, 169, 252-260.	3.2	74
24	The use of different by-products in the production of lightweight alkali activated building materials. Construction and Building Materials, 2017, 135, 315-322.	3.2	51
25	The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cement and Concrete Composites, 2017, 80, 168-174.	4.6	71
26	Lightweight aggregates made from fly ash using the cold-bond process and their use in lightweight concrete. Materiali in Tehnologije, 2017, 51, 267-274.	0.3	15
27	Assessment of alkali activated mortars based on different precursors with regard to their suitability for concrete repair. Construction and Building Materials, 2016, 124, 937-944.	3.2	53
28	Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Materials Characterization, 2016, 113, 207-213.	1.9	192
29	Mechanical and microstructural characterization of geopolymer synthesized from low calcium fly ash. Chemical Industry and Chemical Engineering Quarterly, 2015, 21, 13-22.	0.4	19
30	Influence of aggregate type and size on properties of pervious concrete. Construction and Building Materials, 2015, 78, 69-76.	3.2	216
31	Recycled granulate obtained from waste alumina-rich refractory powder by the cold bonding process. Ceramics International, 2015, 41, 8996-9002.	2.3	7
32	Water vapour permeability of lightweight concrete prepared with different types of lightweight aggregates. Construction and Building Materials, 2014, 68, 314-319.	3.2	14
33	Photo-catalytic efficiency of laboratory made and commercially available ceramic building products. Ceramics International, 2013, 39, 2981-2987.	2.3	17
34	X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO2. Materials Characterization, 2013, 86, 316-321.	1.9	16
35	Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of X-ray micro-tomography (micro-CT) and mercury intrusion porosimetry (MIP). Ceramics International, 2013, 39, 6997-7005.	2.3	77
36	Frost Action Mechanisms of Clay Roofing Tiles: Case Study. Journal of Materials in Civil Engineering, 2012, 24, 1254-1260.	1.3	6

VILMA DUCMAN

#	Article	IF	CITATIONS
37	Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes. Ceramics International, 2012, 38, 1611-1616.	2.3	29
38	The potential use of steel slag in refractory concrete. Materials Characterization, 2011, 62, 716-723.	1.9	52
39	Frost resistance of clay roofing tiles: Case study. Ceramics International, 2011, 37, 85-91.	2.3	28
40	The applicability of different waste materials for the production of lightweight aggregates. Waste Management, 2009, 29, 2361-2368.	3.7	57
41	Microbial Deterioration of Clay Roofing Tiles as a Function of the Firing Temperature. Journal of the American Ceramic Society, 2008, 91, 3762-3767.	1.9	13
42	Low-vacuum SEM analyses of ceramic tiles with emphasis on glaze defects characterisation. Materials Characterization, 2007, 58, 1133-1137.	1.9	13
43	Alkali–silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 2004, 34, 1809-1816.	4.6	85
44	Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cement and Concrete Research, 2002, 32, 223-226.	4.6	154
45	Evaluation of Fly Ash-based Alkali Activated Foams at Room and Elevated Temperatures. , O, , .		1
46	Foundry Wastes as a Potential Precursor in Alkali Activation Technology. , 0, , .		1
47	The Deformation of Alkali-activated Materials at Different Curing Temperatures. , 0, , .		Ο
48	Fibre Reinforced Alkali-Activated Rock Wool. , 0, , .		0
49	The Influence of Different Fibres Quantity on Mechanical and Microstructural Properties of Alkali-activated Foams. , 0, , .		Ο
50	The Development and Assessment of Alkali Activated Paving Blocks. , 0, , .		0
51	Influence of Homogenization of Alkali-Activated Slurry on Mechanical Strength. , 0, , .		1