Kangqi Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mechanical Systems and Signal Processing, 2022, 162, 108038.	8.0	67
2	An innovative energy harvesting backpack strategy through a flexible mechanical motion rectifier. Energy Conversion and Management, 2022, 264, 115731.	9.2	17
3	Magnetically induced micropillar arrays for an ultrasensitive flexible sensor with a wireless recharging system. Science China Materials, 2021, 64, 1977-1988.	6.3	13
4	Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting. Nano-Micro Letters, 2021, 13, 123.	27.0	80
5	Achieving high electric outputs from low-frequency motions through a double-string-spun rotor. Mechanical Systems and Signal Processing, 2021, 155, 107648.	8.0	15
6	An eccentric mass-based rotational energy harvester for capturing ultralow-frequency mechanical energy. Energy Conversion and Management, 2021, 241, 114301.	9.2	38
7	A cantilever-plucked and vibration-driven rotational energy harvester with high electric outputs. Energy Conversion and Management, 2021, 244, 114504.	9.2	34
8	A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting. Nano Energy, 2021, 90, 106576.	16.0	39
9	A cantilever-driven rotor for efficient vibration energy harvesting. Energy, 2021, 235, 121326.	8.8	21
10	A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy. Renewable Energy, 2021, 179, 339-350.	8.9	29
11	Development of bipolar-charged electret rotatory power generator and application in self-powered intelligent thrust bearing. Nano Energy, 2021, 90, 106491.	16.0	14
12	A comprehensive study of non-linear air damping and "pull-in―effects on the electrostatic energy harvesters. Energy Conversion and Management, 2020, 203, 112264.	9.2	102
13	Exploiting ultralow-frequency energy via vibration-to-rotation conversion of a rope-spun rotor. Energy Conversion and Management, 2020, 225, 113433.	9.2	22
14	Achieving high-speed rotations with a semi-flexible rotor driven by ultralow-frequency vibrations. Applied Physics Letters, 2020, 117, .	3.3	14
15	Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions. Renewable Energy, 2020, 156, 1028-1039.	8.9	42
16	A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations. Energy, 2020, 196, 117107.	8.8	30
17	An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency. Applied Energy, 2020, 279, 115762.	10.1	66
18	A twisting vibration based energy harvester for ultra-low frequency excitations. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 693-700.	0.6	0

Kangqi Fan

#	Article	IF	CITATIONS
19	Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester. Mechanical Systems and Signal Processing, 2019, 117, 594-608.	8.0	90
20	A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting. Energy Conversion and Management, 2019, 198, 111820.	9.2	111
21	A magnetically coupled nonlinear T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 2019, 28, 11LT01.	3.5	17
22	A string-driven rotor for efficient energy harvesting from ultra-low frequency excitations. Applied Physics Letters, 2019, 115, .	3.3	34
23	Human Body Heat Based Thermoelectric Harvester with Ultra-Low Input Power Management System for Wireless Sensors Powering. Energies, 2019, 12, 3942.	3.1	18
24	Hybridizing linear and nonlinear couplings for constructing twoâ€degreeâ€ofâ€freedom electromagnetic energy harvesters. International Journal of Energy Research, 2019, 43, 8004.	4.5	6
25	A monostable hybrid energy harvester for capturing energy from low-frequency excitations. Journal of Intelligent Material Systems and Structures, 2019, 30, 2716-2732.	2.5	12
26	A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renewable Energy, 2019, 138, 292-302.	8.9	92
27	Harvesting energy from twisting vibration of a rotor suspended by a piece of string. Smart Materials and Structures, 2019, 28, 07LT01.	3.5	11
28	Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 2019, 169, 356-368.	8.8	110
29	An arc-shaped electromagnetic energy harvester for ultra-low frequency vibrations and swing motions. , 2019, , .		1
30	Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Materials and Structures, 2018, 27, 085001.	3.5	40
31	Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Applied Energy, 2018, 216, 8-20.	10.1	150
32	A monostable piezoelectric energy harvester for broadband low-level excitations. Applied Physics Letters, 2018, 112, .	3.3	120
33	The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS2: A First-Principles Study. Materials, 2018, 11, 218.	2.9	32
34	Evolution of public opinions in closed societies influenced by broadcast media. Physica A: Statistical Mechanics and Its Applications, 2017, 472, 53-66.	2.6	17
35	Performance of a multipurpose piezoelectric energy harvester. International Journal of Modern Physics B, 2017, 31, 1741007.	2.0	5
36	Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester. International Journal of Modern Physics B, 2017, 31, 1741011.	2.0	22

Kangqi Fan

#	Article	IF	CITATIONS
37	Scavenging energy from human limb motions. , 2017, , .		2
38	Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Applied Physics Letters, 2017, 110, .	3.3	123
39	Opinion evolution influenced by informed agents. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 431-441.	2.6	31
40	Emergence and spread of extremist opinions. Physica A: Statistical Mechanics and Its Applications, 2015, 436, 87-97.	2.6	30
41	A nonlinear piezoelectric energy harvester for various mechanical motions. Applied Physics Letters, 2015, 106, .	3.3	69
42	Design and development of a multipurpose piezoelectric energy harvester. Energy Conversion and Management, 2015, 96, 430-439.	9.2	111
43	Complete charging for piezoelectric energy harvesting system. Transactions of Tianjin University, 2014, 20, 407-414.	6.4	1
44	Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester. Energy Conversion and Management, 2014, 86, 561-567.	9.2	68
45	Transient Charging Behavior of an Energy Harvesting System Using SSHI Interface. Integrated Ferroelectrics, 2014, 154, 1-13.	0.7	3
46	An assessment model for collecting and transporting cellulosic biomass. Renewable Energy, 2013, 50, 786-794.	8.9	18
47	Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires. Transactions of Nonferrous Metals Society of China, 2013, 23, 3353-3361.	4.2	53
48	Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for pellet density using response surface methodology. Biofuels, 2012, 3, 259-267.	2.4	7
49	Sugar Yield Comparison of Wheat Straw Processed by Two Pelleting Methods for Cellulosic Biofuel Manufacturing. , 2012, , .		Ο
50	A multiscale modeling approach to adhesive contact. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1680-1686.	5.1	6
51	Adhesive Failure of Micro-Cantilever Beams. , 2006, , .		Ο
52	Study on Atoms Diffusion of Vacuum Fusion Sintering WC-Co Composite Nano-coatings. , 2006, , .		0
53	Design of a Micro Magnetic Acceleration Switch. , 2006, , .		0
54	Stokes' Second Problem with Velocity Slip Boundary Condition. Key Engineering Materials, 0, 483, 287-292.	0.4	1