
Christine Wrenzycki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472917/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular and Molecular Deviations in Bovine In Vitro-Produced Embryos Are Related to the Large Offspring Syndrome1. Biology of Reproduction, 2002, 67, 767-775.	2.7	332
2	Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reproduction, Fertility and Development, 2005, 17, 23.	0.4	158
3	Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Molecular Reproduction and Development, 2001, 60, 370-376.	2.0	93
4	Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics and Chromatin, 2008, 1, 8.	3.9	70
5	The role of sulfated steroid hormones in reproductive processes. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 207-221.	2.5	70
6	Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reproductive BioMedicine Online, 2003, 7, 649-656.	2.4	68
7	Epigenetic reprogramming throughout preimplantation development and consequences for assisted reproductive technologies. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 1-9.	3.6	42
8	Gene Expression and Methylation Patterns in Cloned Embryos. Methods in Molecular Biology, 2006, 348, 285-303.	0.9	23
9	Bovine sperm samples induce different NET phenotypes in a NADPH oxidase-, PAD4-, and Ca++-dependent processâ€. Biology of Reproduction, 2020, 102, 902-914.	2.7	19
10	Intrafollicular Oocyte Transfer (IFOT) of Abattoir-Derived and In Vitro-Matured Oocytes Results in Viable Blastocysts and Birth of Healthy Calves. Biology of Reproduction, 2015, 92, 150.	2.7	18
11	Vocalization as an indicator of estrus climax in Holstein heifers during natural estrus and superovulation. Journal of Dairy Science, 2018, 101, 2383-2394.	3.4	14
12	Gene expression analysis and in vitro production procedures for bovine preimplantation embryos: Past highlights, present concepts and future prospects. Reproduction in Domestic Animals, 2018, 53, 14-19.	1.4	12
13	Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle. Molecular Reproduction and Development, 2018, 85, 849-857.	2.0	12
14	Temporal expression pattern of steroid-metabolizing enzymes in bovine COC during inÂvitro maturation employing different gonadotropin concentrations. Theriogenology, 2019, 131, 182-192.	2.1	10
15	Chronic Effects of Fusarium Mycotoxins in Rations with or without Increased Concentrate Proportion on the Insulin Sensitivity in Lactating Dairy Cows. Toxins, 2018, 10, 188.	3.4	9
16	Semen extender and seminal plasma alter the extent of neutrophil extracellular traps (NET) formation in cattle. Theriogenology, 2021, 160, 72-80.	2.1	9
17	Mouse embryos exposed to oxygen concentrations that mimic changes in the oviduct and uterus show improvement in blastocyst rate, blastocyst size, and accelerated cell division. Reproductive Biology, 2020, 20, 147-153.	1.9	8
18	Profile of bile acid subspecies is similar in blood and follicular fluid of cattle. Veterinary Medicine and Science, 2020, 6, 167-176.	1.6	7

#	Article	IF	CITATIONS
19	Influence of selected (pre-)maturational parameters on in vitro development and sex distribution of bovine embryos. Zygote, 2014, 22, 41-49.	1.1	6
20	Occurrence of sulfonated steroids and ovarian expression of steroid sulfatase and SULT1E1 in cyclic cows. Journal of Steroid Biochemistry and Molecular Biology, 2018, 179, 79-87.	2.5	6
21	Effects of opening the incubator on morphokinetics in mouse embryos. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2018, 229, 64-69.	1.1	6
22	Parameters to identify good quality oocytes and embryos in cattle. Reproduction, Fertility and Development, 2021, 34, 190-202.	0.4	4