
Vincent Levacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Catalytic Regio- and Stereoselective Synthesis of 1,6-Diazabicyclo[4.3.0]nonane-2,7-diones. Journal of Organic Chemistry, 2021, 86, 8600-8609.	3.2	2
2	Multicomponent Catalytic Enantioselective Synthesis of Isoxazolidinâ€5â€Ones. Advanced Synthesis and Catalysis, 2021, 363, 4447-4451.	4.3	3
3	Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts. Catalysts, 2021, 11, 1249.	3.5	6
4	Organocatalytic Multicomponent Synthesis of α/βâ€Đipeptide Derivatives. Chemistry - A European Journal, 2020, 26, 8541-8545.	3.3	9
5	Base-Assisted Intramolecular C–N Coupling Reaction from NH ₂ -Bound Cyclopalladated <scp>l</scp> -Phenylalanine to Indoline-2-carboxylic Acid. Organometallics, 2020, 39, 767-773.	2.3	3
6	Design, Synthesis, and In Vitro Biological Activities of a Bio-Oxidizable Prodrug to Deliver Both ChEs and DYRK1A Inhibitors for AD Therapy. Molecules, 2019, 24, 1264.	3.8	6
7	Enantioselective Catalytic Transformations of Barbituric Acid Derivatives. Catalysts, 2019, 9, 131.	3.5	12
8	Chemical Delivery System of MIBG to the Central Nervous System: Synthesis, ¹¹ C-Radiosynthesis, and <i>in Vivo</i> Evaluation. ACS Medicinal Chemistry Letters, 2019, 10, 352-357.	2.8	8
9	Organocatalytic Enantioselective Decarboxylative Protonation Reaction of Meldrum's Acid Derivatives under PTC Conditions. European Journal of Organic Chemistry, 2018, 2018, 1975-1983.	2.4	8
10	Novel donepezil-like N -benzylpyridinium salt derivatives as AChE inhibitors and their corresponding dihydropyridine "bio-oxidizable―prodrugs: Synthesis, biological evaluation and structure-activity relationship. European Journal of Medicinal Chemistry, 2018, 145, 165-190.	5.5	29
11	A Unique (3+2) Annulation Reaction between Meldrum's Acid and Nitrones: Mechanistic Insight by ESIâ€IMSâ€MS and DFT Studies. Chemistry - A European Journal, 2018, 24, 4086-4093.	3.3	10
12	Dihydroquinoline Carbamate DQS1-02 as a Prodrug of a Potent Acetylcholinesterase Inhibitor for Alzheimer's Disease Therapy: Multigram-Scale Synthesis, Mechanism Investigations, in Vitro Safety Pharmacology, and Preliminary in Vivo Toxicology Profile. ACS Omega, 2018, 3, 18387-18397.	3.5	7
13	Rational design of carbamate-based dual binding site and central AChE inhibitors by a "biooxidisable― prodrug approach: Synthesis, inÂvitro evaluation and docking studies. European Journal of Medicinal Chemistry, 2018, 155, 171-182.	5.5	10
14	Access to Highly Enantioenriched Donepezil-like 1,4-Dihydropyridines as Promising Anti-Alzheimer Prodrug Candidates via Enantioselective Tsuji Allylation and Organocatalytic Aza-Ene-Type Domino Reactions. Journal of Organic Chemistry, 2018, 83, 10231-10240.	3.2	9
15	A Meldrum's Acid Based Multicomponent Synthesis of <i>N</i> â€Fmocâ€isoxazolidinâ€5â€ones: Entry to <i>N</i> â€Fmocâ€Î²â€amino Acids. European Journal of Organic Chemistry, 2017, 2017, 3265-3273.	2.4	5
16	Donepezil-Based Central Acetylcholinesterase Inhibitors by Means of a "Bio-Oxidizable―Prodrug Strategy: Design, Synthesis, and in Vitro Biological Evaluation. Journal of Medicinal Chemistry, 2017, 60, 5909-5926.	6.4	67
17	Catalytic Enantioselective Syntheses of Isoxazolidin-5-ones. Synthesis, 2017, 49, 2117-2128.	2.3	29
18	Delivering FLT to the Central Nervous System by Means of a Promising Targeting System: Synthesis, [11C]Radiosynthesis, and in Vivo Evaluation. ACS Chemical Neuroscience, 2017, 8, 2457-2467.	3.5	7

VINCENT LEVACHER

#	Article	IF	CITATIONS
19	An Overview of the Synthesis of Highly Versatile N-Hydroxysuccinimide Esters. Synthesis, 2017, 49, 472-483.	2.3	26
20	New Developments in Chiral Cooperative Ion Pairing Organocatalysis by Means of Ammonium Oxyanions and Fluorides: From Protonation to Deprotonation Reactions Chemical Record, 2017, 17, 429-440.	5.8	16
21	Chiral Quaternary Ammonium Salts in Organocatalysis. , 2017, , 87-173.		4
22	Meldrum's Acid: A Useful Platform in Asymmetric Organocatalysis. ChemCatChem, 2016, 8, 1882-1890.	3.7	45
23	Brook/Elimination/Aldol Reaction Sequence for the Direct Oneâ€Pot Preparation of Difluorinated Aldols from (Trifluoromethyl)trimethylsilane and Acylsilanes. Advanced Synthesis and Catalysis, 2016, 358, 526-531.	4.3	28
24	Chiral Ammonium Aryloxides: Efficient Multipurpose Basic Organocatalysts. ChemCatChem, 2016, 8, 74-85.	3.7	16
25	Enantioselective Phaseâ€Transfer Catalyzed αâ€Sulfanylation of Isoxazolidinâ€5â€ones: An Entry to β ^{2,2} â€Amino Acid Derivatives. Chemistry - A European Journal, 2016, 22, 15261-15264.	3.3	43
26	Chiral Ammonium Aryloxides as BrÃ,nsted Base Catalysts for the Henry Reaction of Nitroalkanes to Aromatic and Aliphatic Aldehydes. ChemistrySelect, 2016, 1, 3184-3188.	1.5	4
27	Palladium-Catalyzed Carbonylation of (Hetero)Aryl, Alkenyl and Allyl Halides by Means of N-Hydroxysuccinimidyl Formate as CO Surrogate. Journal of Organic Chemistry, 2015, 80, 6537-6544.	3.2	25
28	Dihydroquinoline Carbamate Derivatives as "Bio-oxidizable―Prodrugs for Brain Delivery of Acetylcholinesterase Inhibitors: [¹¹ C] Radiosynthesis and Biological Evaluation. ACS Chemical Neuroscience, 2015, 6, 737-744.	3.5	25
29	Organocatalyzed Multicomponent Synthesis of Isoxazolidin-5-ones. Organic Letters, 2015, 17, 5408-5411.	4.6	31
30	New developments in redox chemical delivery systems by means of 1,4-dihydroquinoline-based targetor: Application to galantamine delivery to the brain. European Journal of Medicinal Chemistry, 2014, 81, 218-226.	5.5	11
31	Progress in Catalytic Asymmetric Protonation. European Journal of Organic Chemistry, 2014, 2014, 6103-6119.	2.4	90
32	Organocatalysed multicomponent synthesis of pyrazolidinones: Meldrum's acid approach. Chemical Communications, 2014, 50, 10218.	4.1	35
33	Developments in Meyers' Lactamization Methodology: En Route to Bi(hetero)aryl Structures with Defined Axial Chirality. Journal of Organic Chemistry, 2013, 78, 8191-8197.	3.2	30
34	Organocatalyzed Synthesis of Isoxazolidinâ€5â€ones: The Meldrum's Acid Approach. Advanced Synthesis and Catalysis, 2013, 355, 2513-2517.	4.3	25
35	Chiral Quaternary Ammonium Aryloxide/ <i>N,O</i> â€Bis(trimethyl―silyl)acetamide Combination as Efficient Organocatalytic System for the Direct Vinylogous Aldol Reaction of (<i>5H</i>)â€Furanâ€2â€one Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 841-846.	4.3	39
36	Enantioselective desymmetrization of prochiral ketones via an organocatalytic deprotonation process. Tetrahedron: Asymmetry, 2013, 24, 764-768.	1.8	17

#	Article	IF	CITATIONS
37	Asymmetric Organocatalytic Protonation of Silyl Enolates Catalyzed by Simple and Original Betaines Derived from <i>Cinchona</i> Alkaloids. European Journal of Organic Chemistry, 2013, 2013, 7693-7696.	2.4	33
38	Deracemization of α-Substituted Carbonyl Compounds via Catalytic Enantioselective Protonation of their Corresponding Enolates. Current Organic Chemistry, 2012, 16, 2192-2205.	1.6	24
39	Recent advances in cooperative ion pairing in asymmetric organocatalysis. Chemical Society Reviews, 2012, 41, 1696-1707.	38.1	185
40	Metal or ammonium alginates as Lewis base catalysts for the 1,2-addition of silyl nucleophiles to carbonyl compounds. Tetrahedron Letters, 2012, 53, 1958-1960.	1.4	17
41	Efficient C-3 functionalization of 4-dimethylaminopyridine (DMAP). A straightforward access to new chiral nucleophilic catalysts. Tetrahedron Letters, 2012, 53, 3284-3287.	1.4	14
42	Catalytic Enantioselective Protonation of Enol Trifluoroacetates by Means of Hydrogenocarbonates and Cinchona Alkaloids. Journal of Organic Chemistry, 2011, 76, 6457-6463.	3.2	33
43	Organocatalyzed Enantioselective Protonation. , 2011, , 67-106.		9
44	Chemical Delivery System of Metaiodobenzylguanidine (MIBG) to the Central Nervous System. Journal of Medicinal Chemistry, 2010, 53, 1281-1287.	6.4	20
45	Organocatalyzed Enantioselective Protonation of Silyl Enol Ethers: Scope, Limitations, and Application to the Preparation of Enantioenriched Homoisoflavones. Journal of Organic Chemistry, 2010, 75, 7704-7716.	3.2	51
46	Product-Catalyzed Addition of Alkyl Nitriles to Unactivated Imines Promoted by Sodium Aryloxide/Ethyl(trimethylsilyl)acetate (ETSA) Combination. Journal of Organic Chemistry, 2009, 74, 3516-3519.	3.2	28
47	Rational design of central selective acetylcholinesterase inhibitors by means of a "bio-oxidisable prodrug―strategy. Organic and Biomolecular Chemistry, 2009, 7, 2612.	2.8	28
48	Synthesis, radiosynthesis and biological evaluation of 1,4-dihydroquinoline derivatives as new carriers for specific brain delivery. Organic and Biomolecular Chemistry, 2009, 7, 3666.	2.8	25
49	Convenient preparation of bifunctional pybox ligands. Tetrahedron, 2008, 64, 10244-10249.	1.9	15
50	New advances in stereoselective Meyers' lactamization. Application to the diastereoselective synthesis of β-substituted oxazoloazepinones. Tetrahedron: Asymmetry, 2008, 19, 2396-2401.	1.8	15
51	Organocatalytic Enantioselective Protonation of Silyl Enolates Mediated by Cinchona Alkaloids and a Latent Source of HF. Angewandte Chemie - International Edition, 2007, 46, 7090-7093.	13.8	80
52	Organocatalytic Enantioselective Protonation of Silyl Enolates Mediated by Cinchona Alkaloids and a Latent Source of HF. Angewandte Chemie, 2007, 119, 7220-7223.	2.0	25
53	Polymerâ€Bound Pyridineâ€Bis(oxazoline). Preparation through Click Chemistry and Evaluation in Asymmetric Catalysis. Advanced Synthesis and Catalysis, 2007, 349, 2079-2084.	4.3	48
54	Solid phase synthesis of a redox delivery system with the aim of targeting peptides into the brain. Organic and Biomolecular Chemistry, 2006, 4, 817.	2.8	11

VINCENT LEVACHER

#	Article	IF	CITATIONS
55	New development of Meyers' methodology: stereoselective preparation of an axially chiral 5,7-fused bicyclic lactam related to circumdatins/benzomalvins and asperlicins. Tetrahedron: Asymmetry, 2006, 17, 281-286.	1.8	23
56	Meyers' bicyclic lactam formation under mild and highly stereoselective conditions. Tetrahedron Letters, 2005, 46, 8385-8389.	1.4	23
57	Amine Capture Strategy for Peptide Bond Formation by Means of Quinolinium Thioester Salts. Journal of the American Chemical Society, 2005, 127, 15668-15669.	13.7	24
58	Highly Stereoselective Friedel—Crafts Type Cyclization. Facile Access to Enantiopure 1,4-Dihydro-4-phenyl Isoquinolinones ChemInform, 2004, 35, no.	0.0	0
59	Preparation of axially chiral quinolinium salts related to NAD+ models: new investigations of these biomimetic models as †chiral amide-transferring agents'. Tetrahedron: Asymmetry, 2004, 15, 3919-3928.	1.8	24
60	Highly stereoselective Friedel–Crafts type cyclization. Facile access to enantiopure 1,4-dihydro-4-phenyl isoquinolinones. Tetrahedron, 2003, 59, 8049-8056.	1.9	37
61	Novel Extension of Meyers' Methodology:  Stereoselective Construction of Axially Chiral 7,5-Fused Bicyclic Lactams. Journal of Organic Chemistry, 2003, 68, 9517-9520.	3.2	56
62	Atropoisomeric quinolinium salt promoting the access to both enantiomeric forms of methyl mandelate: a versatile NADH mimicElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b2/b207434f/. Chemical Communications, 2002, , 2256-2257.	4.1	12
63	Influence of the C(4)î—,C(3)î—,Cî~O dihedral angle of chiral NADH mimics on the stereoselectivity of reductions. Tetrahedron: Asymmetry, 2002, 13, 227-232.	1.8	15
64	Stable annelated chiral NADH models with a rigidified amide part in the quinoline series: synthesis, reactivity and grafting on a Merrifield resin. Tetrahedron, 2001, 57, 3087-3098.	1.9	23
65	Chiral NADH models with restricted or blocked rotation at the amide function: attempts to interpret the mechanism of the enantioselective hydrogen transfer to methyl benzoylformate. Tetrahedron, 2001, 57, 9101-9108.	1.9	13
66	Rational design of novel axially chiral NADH models based on configurational control of atropisomeric lactams. Tetrahedron Letters, 2001, 42, 3713-3716.	1.4	10
67	Design of new axially chiral NADH mimics. Mechanistic investigation of the enantioselective hydride transfer. Tetrahedron Letters, 2001, 42, 4613-4616.	1.4	12
68	Diastereoselective Protonation of Lactam Enolates Derived from (R)-Phenylglycinol. A Novel Asymmetric Route to 4-Phenyl-1,2,3,4-tetrahydroisoquinolines. Organic Letters, 2000, 2, 2185-2187.	4.6	33
69	An efficient synthesis of 3-cyanoquinoline derivatives. Tetrahedron Letters, 1998, 39, 4013-4016.	1.4	34
70	Deracemization of diarylmethanes via lateral lithiation–protonation sequences by means of sparteine. Tetrahedron: Asymmetry, 1998, 9, 2509-2516.	1.8	37
71	Chiral NADH Models in the Pyrido[3,2-c]azepin Series. Conformational Effect of the Carbonyl Group in the Stereocontrol of Reductions. Chemistry Letters, 1996, 25, 359-360.	1.3	12
72	NADH Models in the Pyrrolo[3,4-b]pyridine Series. Role of the Cyclized Structure in the Stereocontrol of Reductions. Chemistry Letters, 1995, 24, 327-328.	1.3	14

#	Article	IF	CITATIONS
73	Chiral NADH Models Derived from Optically Active Amino Alcohols. Heterocycles, 1994, 39, 405.	0.7	20