
Stephan Kupfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5472344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards synthetic unimolecular [Fe2S2]-photocatalysts sensitized by perylene dyes. Dyes and Pigments, 2022, 198, 109940.	2.0	7
2	A Highly Fluorescent Dinuclear Aluminium Complex with Nearâ€Unity Quantum Yield**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
3	Active repair of a dinuclear photocatalyst for visible-light-driven hydrogen production. Nature Chemistry, 2022, 14, 500-506.	6.6	32
4	Lightâ€Driven Multiâ€Charge Separation in a Pushâ€Pull Rutheniumâ€Based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. ChemPhotoChem, 2022, 6, .	1.5	4
5	Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light**. Angewandte Chemie - International Edition, 2022, , .	7.2	6
6	A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a Ï€â€Extended dppz Ligand for Lightâ€Driven Accumulation of Multiple Reducing Equivalents. Chemistry - A European Journal, 2022, 28, e202103882.	1.7	5
7	Ligandâ€Induced Donor State Destabilisation – A New Route to Panchromatically Absorbing Cu(I) Complexes. Chemistry - A European Journal, 2022, , .	1.7	5
8	Co-facial ï€â€"ï€ Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO ₂ Photoreduction. Jacs Au, 2022, 2, 1359-1374.	3.6	24
9	Unravelling the Mystery: Enlightenment of the Uncommon Electrochemistry of Naphthalene Monoimide [FeFe] Hydrogenase Mimics. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
10	Novel [FeFe]-Hydrogenase Mimics: Unexpected Course of the Reaction of Ferrocenyl α-Thienyl Thioketone with Fe3(CO)12. Materials, 2022, 15, 2867.	1.3	7
11	Deepâ€Red Luminescent Molybdenum(0) Complexes with Bi―and Tridentate Isocyanide Chelate Ligands. ChemPhotoChem, 2022, 6, .	1.5	9
12	Frontispiz: Aktivierung eines biomimetischen [FeFe]â€Hydrogenaseâ€Komplexes für die H ₂ â€Produktion mit sichtbarem Licht. Angewandte Chemie, 2022, 134, .	1.6	0
13	Frontispiece: Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
14	Metal–ligand bonding in tricarbonyliron(0) complexes bearing thiochalcone ligands. New Journal of Chemistry, 2022, 46, 12924-12933.	1.4	1
15	Reaction Mechanism of Pdâ€Catalyzed "COâ€Free―Carbonylation Reaction Uncovered by In Situ Spectroscopy: The Formyl Mechanism. Angewandte Chemie - International Edition, 2021, 60, 3422-3427.	7.2	9
16	pysisyphus: Exploring potential energy surfaces in ground and excited states. International Journal of Quantum Chemistry, 2021, 121, e26390.	1.0	29
17	Photochlorination of toluene – the thin line between intensification and selectivity. Part 2: selectivity. Reaction Chemistry and Engineering, 2021, 6, 90-99.	1.9	11
18	Excitation Energy-Dependent Branching Dynamics Determines Photostability of Iron(II)–Mesoionic Carbene Complexes. Inorganic Chemistry, 2021, 60, 9157-9173.	1.9	15

#	Article	IF	CITATIONS
19	Excited-State Switching in Rhenium(I) Bipyridyl Complexes with Donor–Donor and Donor–Acceptor Substituents. Journal of the American Chemical Society, 2021, 143, 9082-9093.	6.6	19
20	Chemical Enhancement vs Molecule–Substrate Geometry in Plasmon-Enhanced Spectroscopy. ACS Photonics, 2021, 8, 2243-2255.	3.2	16
21	Tuning the metal–ligand bond in the <i>Ïf</i> complexes of stannylenes and azabenzenes. Journal of Computational Chemistry, 2021, 42, 2103-2115.	1.5	2
22	Covalent Linkage of BODIPYâ€Photosensitizers to Andersonâ€Type Polyoxometalates Using CLICK Chemistry. Chemistry - A European Journal, 2021, 27, 17181-17187.	1.7	13
23	New insights into the biphasic "CO-free―Pauson–Khand cyclisation reaction through combined <i>in situ</i> spectroscopy and multiple linear regression modelling. Catalysis Science and Technology, 2021, 11, 1626-1636.	2.1	1
24	Are charged tips driving TERS-resolution? A full quantum chemical approach. Journal of Chemical Physics, 2021, 154, 034106.	1.2	13
25	<i>Z</i> -Selective phosphine promoted 1,4-reduction of ynoates and propynoic amides in the presence of water. Organic and Biomolecular Chemistry, 2021, 19, 6092-6097.	1.5	9
26	Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye–Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization. ACS Applied Materials & Interfaces, 2021, 13, 49802-49815.	4.0	16
27	A Molecular Photosensitizer in a Porous Block Copolymer Matrixâ€Implications for the Design of Photocatalytically Active Membranes. Chemistry - A European Journal, 2021, 27, 17049-17058.	1.7	6
28	Modulating the Excited-State Decay Pathways of Cu(I) 4 <i>H</i> -Imidazolate Complexes by Excitation Wavelength and Ligand Backbone. Journal of Physical Chemistry B, 2021, 125, 11498-11511.	1.2	5
29	Coupling of photoactive transition metal complexes to a functional polymer matrix**. Chemistry - A European Journal, 2021, 27, 17104-17114.	1.7	5
30	Role of MLCT States in the Franck–Condon Region of Neutral, Heteroleptic Cu(I)–4 <i>H</i> -imidazolate Complexes: A Spectroscopic and Theoretical Study. Journal of Physical Chemistry A, 2020, 124, 6607-6616.	1.1	13
31	Tetraaryl Cyclopentadienones: Experimental and Theoretical Insights into Negative Solvatochromism and Electrochemistry. European Journal of Organic Chemistry, 2020, 2020, 6555-6562.	1.2	3
32	Molecular Scylla and Charybdis: Maneuvering between pH Sensitivity and Excited-State Localization in Ruthenium Bi(benz)imidazole Complexes. Inorganic Chemistry, 2020, 59, 12097-12110.	1.9	19
33	Iron(0)â€Mediated Stereoselective (3+2) ycloaddition of Thiochalcones via a Diradical Intermediate. Chemistry - A European Journal, 2020, 26, 11412-11416.	1.7	8
34	The chemical effect goes resonant – a full quantum mechanical approach on TERS. Nanoscale, 2020, 12, 6346-6359.	2.8	29
35	Excited-State Switching Frustrates the Tuning of Properties in Triphenylamine-Donor-Ligand Rhenium(I) and Platinum(II) Complexes. Inorganic Chemistry, 2020, 59, 6736-6746.	1.9	16
36	The role of anchoring groups in ruthenium(II)-bipyridine sensitized p-type semiconductor solar cells—a quantum chemical approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 234001.	0.6	3

#	Article	IF	CITATIONS
37	Frontispiece: Twoâ€Photonâ€Induced COâ€Releasing Molecules as Molecular Logic Systems in Solution, Polymers, and Cells. Chemistry - A European Journal, 2019, 25, .	1.7	0
38	Unraveling the Lightâ€Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 13140-13148.	7.2	34
39	Metalâ€Free Aryl Crossâ€Coupling Directed by Traceless Linkers. Chemistry - A European Journal, 2019, 25, 16068-16073.	1.7	11
40	Unraveling the Lightâ€Activated Reaction Mechanism in a Catalytically Competent Key Intermediate of a Multifunctional Molecular Catalyst for Artificial Photosynthesis. Angewandte Chemie, 2019, 131, 13274-13282.	1.6	9
41	Effect of the Catalytic Center on the Electron Transfer Dynamics in Hydrogen-Evolving Ruthenium-Based Photocatalysts Investigated by Theoretical Calculations. Journal of Physical Chemistry C, 2019, 123, 16003-16013.	1.5	15
42	Visible light-activated biocompatible photo-CORM for CO-release with colorimetric and fluorometric dual turn-on response. Polyhedron, 2019, 172, 175-181.	1.0	10
43	Twoâ€Photonâ€Induced COâ€Releasing Molecules as Molecular Logic Systems in Solution, Polymers, and Cells. Chemistry - A European Journal, 2019, 25, 8453-8458.	1.7	15
44	Excited state properties of a series of molecular photocatalysts investigated by time dependent density functional theory. Physical Chemistry Chemical Physics, 2019, 21, 9052-9060.	1.3	12
45	Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways. Molecules, 2019, 24, 245.	1.7	9
46	A SERS-based molecular sensor for selective detection and quantification of copper(II) ions. Sensors and Actuators B: Chemical, 2019, 279, 230-237.	4.0	51
47	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	1.1	7
48	Sterically induced distortions of nickel(II) porphyrins – Comprehensive investigation by DFT calculations and resonance Raman spectroscopy. Coordination Chemistry Reviews, 2018, 360, 1-16.	9.5	35
49	Fate of Photoexcited Molecular Antennae - Intermolecular Energy Transfer versus Photodegradation Assessed by Quantum Dynamics. Journal of Physical Chemistry C, 2018, 122, 3273-3285.	1.5	6
50	Unusually Short-Lived Solvent-Dependent Excited State in a Half-Sandwich Ru(II) Complex Induced by Low-Lying ³ MC States. Journal of Physical Chemistry A, 2018, 122, 1550-1559.	1.1	2
51	A Ï€ï€* State Enables Photoaccumulation of Charges on a ï€-Extended Dipyridophenazine Ligand in a Ru(II) Polypyridine Complex. Journal of Physical Chemistry C, 2018, 122, 83-95.	1.5	19
52	An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)–pyridoquinolinone ligand. Chemical Science, 2018, 9, 4152-4159.	3.7	48
53	Dramatic Alteration of ³ ILCT Lifetimes Using Ancillary Ligands in [Re(L)(CO) ₃ (phen-TPA)] ^{<i>n</i>+} Complexes: An Integrated Spectroscopic and Theoretical Study. Journal of the American Chemical Society, 2018, 140, 4534-4542.	6.6	49
54	Highly fluorescent single crystals of a 4-ethoxy-1,3-thiazole. Dyes and Pigments, 2018, 149, 644-651.	2.0	9

#	Article	IF	CITATIONS
55	Photo-Induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2. Catalysts, 2018, 8, 520.	1.6	11
56	Cu(<scp>i</scp>) <i>vs.</i> Ru(<scp>ii</scp>) photosensitizers: elucidation of electron transfer processes within a series of structurally related complexes containing an extended π-system. Physical Chemistry Chemical Physics, 2018, 20, 24843-24857.	1.3	50
57	Theoretical Investigation of the Electronâ€Transfer Dynamics and Photodegradation Pathways in a Hydrogenâ€Evolving Ruthenium–Palladium Photocatalyst. Chemistry - A European Journal, 2018, 24, 11166-11176.	1.7	12
58	Photophysics of a Ruthenium Complex with a π-Extended Dipyridophenazine Ligand for DNA Quadruplex Labeling. Journal of Physical Chemistry A, 2018, 122, 6558-6569.	1.1	10
59	Theoretical Assessment of Excited State Gradients and Resonance Raman Intensities for the Azobenzene Molecule. Journal of Chemical Theory and Computation, 2017, 13, 1263-1274.	2.3	26
60	Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, e420-e420.	3.8	97
61	Light-responsive paper strips as CO-releasing material with a colourimetric response. Chemical Science, 2017, 8, 6555-6560.	3.7	23
62	Photochemistry and Electron Transfer Kinetics in a Photocatalyst Model Assessed by Marcus Theory and Quantum Dynamics. Journal of Physical Chemistry C, 2017, 121, 16066-16078.	1.5	35
63	[FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Dalton Transactions, 2017, 46, 11180-11191.	1.6	43
64	Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction. Inorganics, 2017, 5, 21.	1.2	25
65	Extended charge accumulation in ruthenium–4H-imidazole-based black absorbers: a theoretical design concept. Physical Chemistry Chemical Physics, 2016, 18, 13357-13367.	1.3	13
66	Spatial resolution of tip-enhanced Raman spectroscopy – DFT assessment of the chemical effect. Nanoscale, 2016, 8, 10229-10239.	2.8	64
67	Spectroelectrochemical Investigation of the Oneâ€Electron Reduction of Nonplanar Nickel(II) Porphyrins. ChemPhysChem, 2016, 17, 3480-3493.	1.0	8
68	Synthesis of three series of ruthenium tris-diimine complexes containing acridine-based π-extended ligands using an efficient "chemistry on the complex―approach. Dalton Transactions, 2016, 45, 16298-16308.	1.6	10
69	Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad. Journal of Physical Chemistry A, 2016, 120, 6379-6388.	1.1	29
70	Sensitization of NOâ€Releasing Ruthenium Complexes to Visible Light. Chemistry - A European Journal, 2015, 21, 15554-15563.	1.7	14
71	Synthesis and Characterization of Ga ^{III} , In ^{III} and Lu ^{III} Complexes of a Set of dtpa Bisâ€Amide Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 4125-4137.	1.0	5
72	The Selfâ€Healing Potential of Triazoleâ€Pyridineâ€Based Metallopolymers. Macromolecular Rapid Communications, 2015, 36, 604-609.	2.0	37

5

#	Article	IF	CITATIONS
73	Photophysics of a Ruthenium 4 <i>H</i> â€Imidazole Panchromatic Dye in Interaction with Titanium Dioxide. ChemPhysChem, 2015, 16, 1061-1070.	1.0	14
74	Ultrafast Intramolecular Relaxation and Waveâ€Packet Motion in a Rutheniumâ€Based Supramolecular Photocatalyst. Chemistry - A European Journal, 2015, 21, 7668-7674.	1.7	24
75	Photophysics of Ru(II) Dyads Derived from Pyrenyl-Substitued Imidazo[4,5- <i>f</i>][1,10]phenanthroline Ligands. Journal of Physical Chemistry A, 2015, 119, 3986-3994.	1.1	34
76	In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO ₂ thin film electrodes. Physical Chemistry Chemical Physics, 2015, 17, 29637-29646.	1.3	16
77	And yet they glow: thiazole based push–pull fluorophores containing nitro groups and the influence of regioisomerism. Methods and Applications in Fluorescence, 2015, 3, 025005.	1.1	16
78	Trapped in Imidazole: How to Accumulate Multiple Photoelectrons on a Blackâ€Absorbing Ruthenium Complex. Chemistry - A European Journal, 2014, 20, 3793-3799.	1.7	38
79	Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chemical Communications, 2014, 50, 5227.	2.2	48
80	Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12422.	1.3	53
81	Tuning of photocatalytic activity by creating a tridentate coordination sphere for palladium. Dalton Transactions, 2014, 43, 11676.	1.6	23
82	Synthesis, properties and quantum chemical evaluation of solvatochromic pyridinium-phenyl-1,3-thiazol-4-olate betaine dyes. Tetrahedron, 2013, 69, 1489-1498.	1.0	12
83	An Assessment of RASSCF and TDDFT Energies and Gradients on an Organic Donor–Acceptor Dye Assisted by Resonance Raman Spectroscopy. Journal of Chemical Theory and Computation, 2013, 9, 543-554.	2.3	38
84	Structural Control of Photoinduced Dynamics in 4 <i>H</i> -Imidazole-Ruthenium Dyes. Journal of Physical Chemistry C, 2012, 116, 25664-25676.	1.5	38
85	Arylamineâ€Modified Thiazoles as Donor–Acceptor Dyes: Quantum Chemical Evaluation of the Chargeâ€Transfer Process and Testing as Ligands in Ruthenium(II) Complexes. European Journal of Organic Chemistry, 2012, 2012, 5231-5247.	1.2	26
86	A Novel Ru(II) Polypyridine Black Dye Investigated by Resonance Raman Spectroscopy and TDDFT Calculations. Journal of Physical Chemistry C, 2012, 116, 19968-19977.	1.5	30
87	Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	5
88	4-Methoxy-1,3-thiazole based donor-acceptor dyes: Characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dyes and Pigments, 2012, 94, 512-524.	2.0	67
89	Influence of Multiple Protonation on the Initial Excitation in a Black Dye. Journal of Physical Chemistry C, 2011, 115, 24004-24012.	1.5	28
90	Protonation effects on the resonance Raman properties of a novel (terpyridine)Ru(4H-imidazole) complex: an experimental and theoretical case study. Physical Chemistry Chemical Physics, 2011, 13, 15580.	1.3	54

#	Article	IF	CITATIONS
91	A Highly Fluorescent Dinuclear Aluminium Complex with Nearâ€Unity Quantum Yield. Angewandte Chemie, 0, , .	1.6	0
92	Aktivierung eines biomimetischen [FeFe]â€Hydrogenaseâ€Komplexes für die H ₂ â€Produktion m sichtbarem Licht**. Angewandte Chemie, 0, , .	^{it} 1.6	0