
## Chao Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5471798/publications.pdf Version: 2024-02-01



Снао Ош

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food<br>Chemistry, 2015, 174, 82-88.                                                                                                                                        | 4.2 | 161       |
| 2  | Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydrate Polymers, 2015, 121, 155-162.                                                                                                                    | 5.1 | 147       |
| 3  | Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chemistry, 2017, 221, 1426-1433.                                                                                                                 | 4.2 | 103       |
| 4  | Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. LWT - Food Science and Technology, 2016, 74, 303-310.                                                                      | 2.5 | 84        |
| 5  | Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 2020, 317, 126328.                                                                                        | 4.2 | 67        |
| 6  | A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science and Technology, 2019, 92, 138-151.                                                             | 7.8 | 66        |
| 7  | Stimulus-responsive hydrogels in food science: A review. Food Hydrocolloids, 2022, 124, 107218.                                                                                                                                                                    | 5.6 | 66        |
| 8  | A Dual Cross-Linked Strategy to Construct Moldable Hydrogels with High Stretchability, Good<br>Self-Recovery, and Self-Healing Capability. Journal of Agricultural and Food Chemistry, 2019, 67,<br>3966-3980.                                                     | 2.4 | 65        |
| 9  | Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled<br>Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. Journal<br>of Agricultural and Food Chemistry, 2018, 66, 9785-9793.          | 2.4 | 58        |
| 10 | Effects of heat moisture treatment on the physicochemical properties of starch nanoparticles.<br>Carbohydrate Polymers, 2015, 117, 605-609.                                                                                                                        | 5.1 | 57        |
| 11 | A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols. Food Chemistry, 2016, 213, 579-587.                                            | 4.2 | 55        |
| 12 | Effects of Degree of Polymerization on Size, Crystal Structure, and Digestibility of Debranched Starch<br>Nanoparticles and Their Enhanced Antioxidant and Antibacterial Activities of Curcumin. ACS<br>Sustainable Chemistry and Engineering, 2019, 7, 8499-8511. | 3.2 | 50        |
| 13 | Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 2021, 116, 492-500.                                | 7.8 | 48        |
| 14 | Rheological properties and microstructure characterization of normal and waxy corn starch dry heated with soy protein isolate. Food Hydrocolloids, 2015, 48, 1-7.                                                                                                  | 5.6 | 47        |
| 15 | Green Synthesis of Cyclodextrin-Based Metal–Organic Frameworks through the Seed-Mediated<br>Method for the Encapsulation of Hydrophobic Molecules. Journal of Agricultural and Food<br>Chemistry, 2018, 66, 4244-4250.                                             | 2.4 | 46        |
| 16 | Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible<br>Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and<br>Food Chemistry, 2019, 67, 391-398.                              | 2.4 | 46        |
| 17 | Differences in physicochemical, morphological, and structural properties between rice starch and rice flour modified by dry heat treatment. Starch/Staerke, 2015, 67, 756-764.                                                                                     | 1.1 | 43        |
| 18 | Advances in research on preparation, characterization, interaction with proteins, digestion and<br>delivery systems of starch-based nanoparticles. International Journal of Biological Macromolecules,<br>2020, 152, 117-125.                                      | 3.6 | 43        |

Снао Qiu

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Self-Assembly of Metal–Phenolic Networks as Functional Coatings for Preparation of Antioxidant,<br>Antimicrobial, and pH-Sensitive-Modified Starch Nanoparticles. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 17379-17389. | 3.2 | 41        |
| 20 | Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science, 2019, 553, 549-556.                                   | 5.0 | 41        |
| 21 | Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.                                                      | 5.1 | 41        |
| 22 | Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as<br>functional food ingredients and bioactive delivery systems. Trends in Food Science and Technology,<br>2022, 119, 90-100.       | 7.8 | 38        |
| 23 | The effect of peanut protein nanoparticles on characteristics of protein- and starch-based nanocomposite films: A comparative study. Industrial Crops and Products, 2015, 77, 565-574.                                                | 2.5 | 37        |
| 24 | A combined enzymatic and ionic cross-linking strategy for pea protein/sodium alginate<br>double-network hydrogel with excellent mechanical properties and freeze-thaw stability. Food<br>Hydrocolloids, 2022, 131, 107737.            | 5.6 | 34        |
| 25 | Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering, 2022, 312, 110752.                                                                                                 | 2.7 | 33        |
| 26 | Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends in Food Science and Technology, 2021, 109, 398-412.                                                        | 7.8 | 30        |
| 27 | Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Ultrasonics Sonochemistry, 2020, 66, 105074.                                                           | 3.8 | 27        |
| 28 | The Pasting and Gel Textural Properties of Corn Starch in Glucose, Fructose and Maltose Syrup. PLoS<br>ONE, 2014, 9, e95862.                                                                                                          | 1.1 | 23        |
| 29 | In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the<br>Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Applied Materials &<br>Interfaces, 2020, 12, 46609-46620.   | 4.0 | 21        |
| 30 | Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chemistry, 2022, 384, 132429.                                                                                                                         | 4.2 | 21        |
| 31 | High-efficiency production of γ-cyclodextrin using β-cyclodextrin as the donor raw material by cyclodextrin opening reactions using recombinant cyclodextrin glycosyltransferase. Carbohydrate Polymers, 2018, 182, 75-80.            | 5.1 | 19        |
| 32 | Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 2022, 376, 131869.                                     | 4.2 | 19        |
| 33 | Association between Food Preferences, Eating Behaviors and Socio-Demographic Factors, Physical<br>Activity among Children and Adolescents: A Cross-Sectional Study. Nutrients, 2020, 12, 640.                                         | 1.7 | 18        |
| 34 | Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Critical Reviews in Food Science and Nutrition, 2023, 63, 4092-4105.                                                          | 5.4 | 17        |
| 35 | Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 11006-11014.                                                          | 2.4 | 15        |
| 36 | Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery<br>Systems. Foods, 2022, 11, 1562.                                                                                                    | 1.9 | 14        |

Снао Qiu

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl<br>Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 2017,<br>10, 1210.             | 1.3 | 13        |
| 38 | Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin:<br>Equilibrium, kinetics and mechanism of adsorption. Food Bioscience, 2021, 41, 101081.                              | 2.0 | 13        |
| 39 | Ultrasound-assisted self-assembly of β-cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocolloids, 2020, 108, 106021.                                                          | 5.6 | 13        |
| 40 | Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods, 2022, 11, 450.                                                                | 1.9 | 13        |
| 41 | Study on the interaction between bovine serum albumin and starch nanoparticles prepared by isoamylolysis and recrystallization. Colloids and Surfaces B: Biointerfaces, 2015, 128, 594-599.                              | 2.5 | 12        |
| 42 | Preparation of active polysaccharide-loaded maltodextrin nanoparticles and their stability as a function of ionic strength and pH. LWT - Food Science and Technology, 2017, 76, 164-171.                                 | 2.5 | 12        |
| 43 | Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L<br>Fermentation Tanks. Molecules, 2018, 23, 2888.                                                                             | 1.7 | 12        |
| 44 | Differences in rheological behavior between normal and waxy corn starches modified by dry heating with hydrocolloids. Starch/Staerke, 2017, 69, 1600332.                                                                 | 1.1 | 11        |
| 45 | Deciphering external chain length and cyclodextrin production with starch catalyzed by cyclodextrin glycosyltransferase. Carbohydrate Polymers, 2022, 284, 119156.                                                       | 5.1 | 11        |
| 46 | Structural transformation and oil absorption of starches with different crystal types during frying.<br>Food Chemistry, 2022, 390, 133115.                                                                               | 4.2 | 11        |
| 47 | Preparation, characterization and in vitro digestive behaviors of emulsions synergistically stabilized by γ-cyclodextrin/sodium caseinate/alginate. Food Research International, 2022, 160, 111634.                      | 2.9 | 11        |
| 48 | The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition, 2023, 63, 12126-12135.                                            | 5.4 | 11        |
| 49 | Preparation and characterization of redox-sensitive glutenin nanoparticles. International Journal of<br>Biological Macromolecules, 2019, 137, 327-336.                                                                   | 3.6 | 10        |
| 50 | A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Research International, 2022, 156, 111314.                                     | 2.9 | 9         |
| 51 | Green Preparation of Robust Hydrophobic β-Cyclodextrin/Chitosan Sponges for Efficient Removal of<br>Oil from Water. Langmuir, 2021, 37, 14380-14389.                                                                     | 1.6 | 7         |
| 52 | A Novel Cyclodextrin-Functionalized Hybrid Silicon Wastewater Nano-Adsorbent Material and Its<br>Adsorption Properties. Molecules, 2018, 23, 1485.                                                                       | 1.7 | 6         |
| 53 | Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled<br>glucose release in the human gut: a review. Critical Reviews in Food Science and Nutrition, 2023, 63,<br>6126-6137. | 5.4 | 6         |
| 54 | Variations in Raven's Progressive Matrices scores among Chinese children and adolescents.<br>Personality and Individual Differences, 2020, 164, 110064.                                                                  | 1.6 | 4         |