Isabel Escudero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/547132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach. Foods, 2022, 11, 279.	4.3	11
2	Formulation and Preparation of Water-In-Oil-In-Water Emulsions Loaded with a Phenolic-Rich Inner Aqueous Phase by Application of High Energy Emulsification Methods. Foods, 2020, 9, 1411.	4.3	20
3	Stability and characterization studies of Span 80 niosomes modified with CTAB in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124999.	4.7	15
4	Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). Journal of Supercritical Fluids, 2019, 147, 310-321.	3.2	10
5	Study of ceramic membrane behavior for okadaic acid and heavy-metal determination in filtered seawater. Journal of Environmental Management, 2019, 232, 564-573.	7.8	5
6	Sensor system based on flexible screen-printed electrodes for electrochemical detection of okadaic acid in seawater. Talanta, 2019, 192, 347-352.	5.5	17
7	Comparison of backing materials of screen printed electrochemical sensors for direct determination of the sub-nanomolar concentration of lead in seawater. Talanta, 2018, 182, 549-557.	5.5	39
8	Separation of sodium lactate from Span 80 and SDS surfactants by ultrafiltration. Separation and Purification Technology, 2017, 180, 90-98.	7.9	9
9	Application of the solution-diffusion-film model for the transfer of electrolytes and uncharged compounds in a nanofiltration membrane. Journal of Industrial and Engineering Chemistry, 2017, 47, 368-374.	5.8	7
10	Solubilization of Span 80 Niosomes by Sodium Dodecyl Sulfate. ACS Sustainable Chemistry and Engineering, 2016, 4, 1862-1869.	6.7	10
11	Colour removal from beet molasses by ultrafiltration with activated charcoal. Chemical Engineering Journal, 2016, 283, 313-322.	12.7	41
12	Formulation of Span 80 niosomes modified with SDS for lactic acid entrapment. Desalination and Water Treatment, 2015, 56, 3463-3475.	1.0	13
13	Lactic acid recovery by microfiltration using niosomes as extraction agents. Separation and Purification Technology, 2015, 151, 1-13.	7.9	11
14	Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chemistry, 2015, 167, 16-23.	8.2	84
15	Accurate determination of key surface properties that determine the efficient separation of bovine milk BSA and LF proteins. Separation and Purification Technology, 2014, 135, 145-157.	7.9	21
16	Formulation and characterization of Tween 80/cholestherol niosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 167-177.	4.7	23
17	Micellar-enhanced ultrafiltration for the recovery of lactic acid and citric acid from beet molasses with sodium dodecyl sulphate. Journal of Membrane Science, 2013, 430, 11-23.	8.2	36
18	Extraction of betaine from beet molasses using membrane contactors. Journal of Membrane Science, 2011, 372, 258-268.	8.2	12

ISABEL ESCUDERO

#	Article	IF	CITATIONS
19	Equilibrium Distribution Model of Betaine between Surfactant Micelles and Water: Application to a Micellar-Enhanced Ultrafiltration Process. Industrial & Engineering Chemistry Research, 2010, 49, Extractorequilibria of <mml:math <="" altimg="si103.gif" display="inline" overflow="scroll" td=""><td>3.7</td><td>8</td></mml:math>	3.7	8
20	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.8	9
21	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.e. Chemical En Recovery of α-phenylglycine by micellar ultrafiltration using organic membranes in a stirred cell. Desalination, 2006, 200, 327-329.	8.2	3
22	Recovery of α-Phenylglycine by Micellar Extractive Ultrafiltration. Chemical Engineering Research and Design, 2006, 84, 610-616.	5.6	7
23	Valeric acid extraction with tri-n-butyl phosphate impregnated in a macroporous resin: II. Studies in fixed bed columns. Journal of Chemical Technology and Biotechnology, 2006, 81, 275-281.	3.2	5
24	Mass transfer in extractive ultrafiltration of α-phenylglycine with TOMACI in a hollow fiber contactor. Journal of Membrane Science, 2005, 252, 9-18.	8.2	6
25	Valeric Acid Extraction with Triâ€Nâ€butyl Phosphate Impregnated in a Macroporous Resin. I. Equilibrium and Mass Transfer Rates. Separation Science and Technology, 2005, 39, 77-95.	2.5	19
26	α-Phenylglycine Extraction with Trialkylmethylammonium Chloride Free and Immobilized in a Macroporous Resin. Chemical Engineering Research and Design, 2002, 80, 529-536.	5.6	20
27	α-Phenylglycine Extraction with a Trialkylmethylammonium Chloride-Impregnated Macroporous Resin. Chemical Engineering Research and Design, 2002, 80, 537-542.	5.6	15
28	Application of Crossflow Ultrafiltration to Emulsion Separation in the Extraction of Valeric Acid with Tri-n-butyl Phosphate. Separation Science and Technology, 2000, 35, 811-823.	2.5	7
29	LIQUID-LIQUID EXTRACTION OF 2,3-BUTANEDIOL FROM DILUTE AQUEOUS SOLUTIONS WITH MIXED SOLVENTS. Chemical Engineering Communications, 1999, 173, 135-146.	2.6	8
30	Estimation of endoglucanase and lysozyme effective diffusion coefficients in polysulphone membranes. Journal of Biotechnology, 1999, 72, 77-83.	3.8	14
31	Reply to Comments on "LiquidⰒLiquid Equilibria in (2,3-Butanediol + 2-Butoxyethanol + Water +) Tj ETQq1 1 Journal of Chemical & Engineering Data, 1998, 43, 1103-1103.	0.784314 1.9	rgBT /Over 0
32	Reply to "Letter to Editor―by F. Ruiz and A. Marcilla on J. Chem. Eng. Data 1996, 41, 2â^'5. Journal of Chemical & Engineering Data, 1997, 42, 411-411.	1.9	0
33	Liquidâ^'Liquid Equilibria in (2,3-Butanediol + 2-Butoxyethanol + Water + Potassium Chloride) at 70 °C. Journal of Chemical & Engineering Data, 1996, 41, 1383-1387.	1.9	4
34	Liquidâ^'Liquid Equilibria for 2,3-Butanediol + Water + 4-(1-Methylpropyl)phenol + Toluene at 25 °C. Journal of Chemical & Engineering Data, 1996, 41, 2-5.	1.9	7
35	Liquid-Liquid Equilibrium for 2,3-Butanediol + Water + Organic Solvents. Journal of Chemical & Engineering Data, 1994, 39, 834-839.	1.9	16