Clément Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5471290/publications.pdf Version: 2024-02-01

		34105	21540
119	20,712	52	114
papers	citations	h-index	g-index
121	121	121	22229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry, 1988, 18, 259-341.	7.2	2,003
2	Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews, 2002, 102, 4093-4138.	47.7	1,832
3	Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4, 277-288.	27.5	1,294
4	Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011, 40, 696.	38.1	1,235
5	Designed Hybrid Organicâ^'Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chemistry of Materials, 2001, 13, 3061-3083.	6.7	1,194
6	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	38.1	1,030
7	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	47.7	1,008
8	Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chemical Reviews, 2013, 113, 7981-8065.	47.7	877
9	Controlled Formation of Highly Organized Mesoporous Titania Thin Films:  From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. Journal of the American Chemical Society, 2003, 125, 9770-9786.	13.7	871
10	Chemical modification of alkoxide precursors. Journal of Non-Crystalline Solids, 1988, 100, 65-76.	3.1	741
11	Design, Synthesis, and Properties of Inorganic and Hybrid Thin Films Having Periodically Organized Nanoporosity. Chemistry of Materials, 2008, 20, 682-737.	6.7	735
12	Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly. Advanced Functional Materials, 2004, 14, 309-322.	14.9	732
13	Hydrolysis of titanium alkoxides: Modification of the molecular precursor by acetic acid. Journal of Non-Crystalline Solids, 1987, 89, 206-216.	3.1	598
14	Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry. Langmuir, 2005, 21, 12362-12371.	3.5	396
15	Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials. Advanced Materials, 2011, 23, 599-623.	21.0	327
16	Sol-gel chemistry. Journal of Non-Crystalline Solids, 1992, 145, 11-19.	3.1	319
17	"Chimie douce†A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 2010, 13, 3-39.	0.5	270
18	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	14.9	264

#	Article	IF	CITATIONS
19	Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Solâ^'Gel Coatings: An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells. Chemistry of Materials, 2010, 22, 4406-4413.	6.7	258
20	Optimised photocatalytic activity of grid-like mesoporous TiO2films: effect of crystallinity, pore size distribution, and pore accessibility. Journal of Materials Chemistry, 2006, 16, 77-82.	6.7	257
21	Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators. Chemistry of Materials, 2008, 20, 782-820.	6.7	236
22	Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 2014, 6, 6267-6292.	5.6	168
23	Nanocrystalline Transition-Metal Oxide Spheres with Controlled Multi-Scale Porosity. Advanced Functional Materials, 2003, 13, 37-42.	14.9	159
24	Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions. Chemistry of Materials, 2007, 19, 4349-4356.	6.7	146
25	CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Applied Catalysis B: Environmental, 2018, 220, 615-625.	20.2	141
26	Morphological and Structural Evolution of Co ₃ O ₄ Nanoparticles Revealed by <i>in Situ</i> Electrochemical Transmission Electron Microscopy during Electrocatalytic Water Oxidation. ACS Nano, 2019, 13, 11372-11381.	14.6	140
27	Elaboration of Monodisperse Spherical Hollow Particles with Ordered Mesoporous Silica Shells via Dual Latex/Surfactant Templating: Radial Orientation of Mesopore Channels. Langmuir, 2008, 24, 13132-13137.	3.5	133
28	Integrative Approaches to Hybrid Multifunctional Materials: From Multidisciplinary Research to Applied Technologies. Advanced Materials, 2010, 22, 3208-3214.	21.0	131
29	Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today, 2012, 7, 21-28.	11.9	120
30	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	38.1	117
31	Green scalable aerosol synthesis of porous metal–organic frameworks. Chemical Communications, 2013, 49, 3848.	4.1	103
32	Oneâ€Pot Aerosol Route to MoO ₃ â€SiO ₂ â€Al ₂ O ₃ Catalysts with Ordered Super Microporosity and High Olefin Metathesis Activity. Angewandte Chemie - International Edition, 2012, 51, 2129-2131.	13.8	101
33	A General Solution Route toward Metal Boride Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 3262-3265.	13.8	99
34	Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry. Journal of the American Chemical Society, 2008, 130, 7882-7897.	13.7	96
35	Facile General Route toward Tunable Magnéli Nanostructures and Their Use As Thermoelectric Metal Oxide/Carbon Nanocomposites. ACS Nano, 2011, 5, 9052-9061.	14.6	95
36	Structure and electrochromism of two-dimensional octahedral molecular sieve h'-WO3. Nature Communications, 2019, 10, 327.	12.8	88

#	Article	IF	CITATIONS
37	Improving the Li-Electrochemical Properties of Monodisperse Ni ₂ P Nanoparticles by Self-Generated Carbon Coating. Chemistry of Materials, 2012, 24, 688-697.	6.7	86
38	Selective CO ₂ methanation on Ru/TiO ₂ catalysts: unravelling the decisive role of the TiO ₂ support crystal structure. Catalysis Science and Technology, 2016, 6, 8117-8128.	4.1	84
39	Coupling Nanobuilding Block and Breath Figures Approaches for the Designed Construction of Hierarchically Templated Porous Materials and Membranes. Chemistry of Materials, 2008, 20, 1049-1056.	6.7	81
40	Hybridization in Materials Science – Evolution, Current State, and Future Aspirations. European Journal of Inorganic Chemistry, 2012, 2012, 5097-5105.	2.0	78
41	Bio-inspired synthetic pathways and beyond: integrative chemistry. New Journal of Chemistry, 2008, 32, 1284.	2.8	76
42	One-pot aerosol synthesis of ordered hierarchical mesoporous core–shell silica nanoparticles. Chemical Communications, 2004, , 1630-1631.	4.1	75
43	Direct Aerosol Synthesis of Largeâ€Pore Amorphous Mesostructured Aluminosilicates with Superior Acidâ€Catalytic Properties. Angewandte Chemie - International Edition, 2009, 48, 2784-2787.	13.8	75
44	Hierarchically Structured Ultraporous Iridiumâ€Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers. Advanced Energy Materials, 2019, 9, 1802136.	19.5	72
45	Metal-Dependent Interplay between Crystallization and Phosphorus Diffusion during the Synthesis of Metal Phosphide Nanoparticles. Chemistry of Materials, 2012, 24, 4134-4145.	6.7	71
46	Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions. Applied Catalysis A: General, 2014, 474, 194-202.	4.3	65
47	First in-situ SAXS studies of the mesostructuration of spherical silica and titania particles during spray-drying process. Chemical Communications, 2003, , 2798-2799.	4.1	64
48	Soft-Chemistry–Based Routes to Epitaxial α-Quartz Thin Films with Tunable Textures. Science, 2013, 340, 827-831.	12.6	64
49	New photoactive hybrid organic–inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties. Journal of Materials Chemistry, 2005, 15, 3380.	6.7	56
50	Enzyme-based biohybrid foams designed for continuous flow heterogeneous catalysis and biodiesel production. Energy and Environmental Science, 2011, 4, 2840.	30.8	56
51	The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nature Communications, 2021, 12, 3935.	12.8	56
52	Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chemistry of Materials, 2012, 24, 4326-4336.	6.7	55
53	Aerosol route to nanostructured WO3-SiO2-Al2O3 metathesis catalysts: Toward higher propene yield. Applied Catalysis A: General, 2014, 470, 458-466.	4.3	54
54	Light-induced charge separation and storage in titanium oxide gels. Physical Review E, 2005, 71, 021403.	2.1	53

#	Article	IF	CITATIONS
55	Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chemical Science, 2020, 11, 954-961.	7.4	52
56	Aerosol Route to TiO ₂ –SiO ₂ Catalysts with Tailored Pore Architecture and High Epoxidation Activity. Chemistry of Materials, 2019, 31, 1610-1619.	6.7	50
57	Ink Jet Printing of Microdot Arrays of Mesostructured Silica. Journal of the American Ceramic Society, 2006, 89, 1876-1882.	3.8	48
58	Integrative strategies to hybrid lamellar compounds: an integration challenge. Applied Clay Science, 2014, 100, 2-21.	5.2	48
59	Laser-induced photopatterning of organic–inorganic TiO2-based hybrid materials with tunable interfacial electron transfer. Physical Chemistry Chemical Physics, 2009, 11, 1248.	2.8	47
60	Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Applied Catalysis A: General, 2014, 481, 11-18.	4.3	47
61	Revisiting the Molecular Roots of a Ubiquitously Successful Synthesis: Nickel(0) Nanoparticles by Reduction of [Ni(acetylacetonate) ₂]. Chemistry - A European Journal, 2012, 18, 14165-14173.	3.3	43
62	In Situ Solid–Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis. Inorganic Chemistry, 2017, 56, 9225-9234.	4.0	42
63	Anatase TiO ₂ Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 6428-6435.	5.0	40
64	New route toward nanosized crystalline metal borides with tuneable stoichiometry and variable morphologies. Faraday Discussions, 2016, 191, 511-525.	3.2	37
65	Tunable Multifunctional Mesoporous Silica Microdots Arrays by Combination of Inkjet Printing, EISA, and Click Chemistry. Chemistry of Materials, 2012, 24, 4337-4342.	6.7	36
66	First acidic macro-mesocellular aluminosilicate monolithic foams "SiAl(HIPE)―and their catalytic properties. Chemical Communications, 2015, 51, 14018-14021.	4.1	36
67	A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia. Green Chemistry, 2011, 13, 3230.	9.0	35
68	Mesoporous TiO ₂ Support Materials for Ru-Based CO ₂ Methanation Catalysts. ACS Applied Nano Materials, 2019, 2, 3220-3230.	5.0	34
69	Extinction of photo-induced Ti3+ centres in titanium oxide gels and gel-based oxo-PHEMA hybrids. Chemical Physics Letters, 2006, 429, 523-527.	2.6	33
70	The gel route to Cr3+-doped TiO2, an ESR study. Journal of Non-Crystalline Solids, 1987, 89, 84-97.	3.1	32
71	Structural transitions at the nanoscale: the example of palladium phosphides synthesized from white phosphorus. Dalton Transactions, 2013, 42, 12667.	3.3	32
72	Original Electrospun Core–Shell Nanostructured Magnéli Titanium Oxide Fibers and their Electrical Properties. Advanced Materials, 2014, 26, 2654-2658.	21.0	25

#	Article	IF	CITATIONS
73	Following in Situ the Degradation of Mesoporous Silica in Biorelevant Conditions: At Last, a Good Comprehension of the Structure Influence. ACS Applied Materials & Interfaces, 2020, 12, 13598-13612.	8.0	25
74	Using Evaporation-Induced Self-Assembly for the Direct Drug Templating of Therapeutic Vectors with High Loading Fractions, Tunable Drug Release, and Controlled Degradation. Chemistry of Materials, 2013, 25, 4671-4678.	6.7	24
75	Crystallization of hollow mesoporous silica nanoparticles. Chemical Communications, 2015, 51, 4164-4167.	4.1	24
76	Aerosol Route to Highly Efficient (Co)Mo/SiO ₂ Mesoporous Catalysts. Advanced Functional Materials, 2014, 24, 233-239.	14.9	23
77	Waterâ€Induced Phase Separation Forming Macrostructured Epitaxial Quartz Films on Silicon. Advanced Functional Materials, 2014, 24, 5494-5502.	14.9	22
78	Synthesis of Ce ₂ O ₂ S and Gd _{2(1–<i>y</i>)} Ce _{2<i>y</i>} O ₂ S Nanoparticles and Reactivity from in Situ X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. Inorganic Chemistry, 2017, 56, 14227-14236.	4.0	22
79	Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction. Nanoscale, 2020, 12, 15209-15213.	5.6	22
80	Surfaceâ€Driven Magnetotransport in Perovskite Nanocrystals. Advanced Materials, 2017, 29, 1604745.	21.0	21
81	Inkjet-Printing-Engineered Functional Microdot Arrays Made of Mesoporous Hybrid Organosilicas. Chemistry of Materials, 2010, 22, 3875-3883.	6.7	20
82	Mesoscopically structured nanocrystalline metal oxide thin films. Nanoscale, 2014, 6, 14025-14043.	5.6	18
83	Nickel-Doped Sodium Cobaltite 2D Nanomaterials: Synthesis and Electrocatalytic Properties. Chemistry of Materials, 2018, 30, 4986-4994.	6.7	17
84	Band Gap Engineering from Cation Balance: The Case of Lanthanide Oxysulfide Nanoparticles. Chemistry of Materials, 2019, 31, 5014-5023.	6.7	17
85	Laser imprinting of 3D structures in gel-based titanium oxide organic-inorganic hybrids. Applied Physics A: Materials Science and Processing, 2006, 84, 27-30.	2.3	16
86	New Aluminosilicate Materials with Hierarchical Porosity Generated by Aerosol Process. Oil and Gas Science and Technology, 2009, 64, 681-696.	1.4	16
87	Aerosol synthesis of thermally stable porous noble metals and alloys by using bi-functional templates. Materials Horizons, 2020, 7, 541-550.	12.2	13
88	Origin of transparency in scattering biomimetic collagen materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11947-11953.	7.1	13
89	Luminescence properties of pHEMA-TiO2 gels based hybrids materials. Journal of Luminescence, 2012, 132, 1192-1199.	3.1	11
90	<i>In situ</i> insight into the unconventional ruthenium catalyzed growth of carbon nanostructures. Nanoscale, 2018, 10, 14957-14965.	5.6	11

#	Article	IF	CITATIONS
91	Selfâ€Assembled Collagen Microparticles by Aerosol as a Versatile Platform for Injectable Anisotropic Materials. Small, 2020, 16, e1902224.	10.0	11
92	Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde. Catalysis Science and Technology, 2018, 8, 5073-5080.	4.1	10
93	An expeditious synthesis of early transition metal carbide nanoparticles on graphitic carbons. Chemical Communications, 2016, 52, 9546-9549.	4.1	9
94	Metal-Induced Crystallization in Metal Oxides. Accounts of Chemical Research, 2022, 55, 171-185.	15.6	9
95	Thermal Stability of Oleateâ€Stabilized Gd 2 O 2 S Nanoplates in Inert and Oxidizing Atmospheres. ChemNanoMat, 2019, 5, 539-546.	2.8	8
96	Unraveling the Role of Alkali Cations in the Growth Mechanism of Gd ₂ O ₂ S Nanoparticles. Chemistry of Materials, 2020, 32, 1131-1139.	6.7	8
97	Unambiguous localization of titanium and iron cations in doped manganese hollandite nanowires. Chemical Communications, 2020, 56, 4812-4815.	4.1	6
98	A Single Molecular Stoichiometric Pâ€Source for Phaseâ€Selective Synthesis of Crystalline and Amorphous Iron Phosphide Nanocatalysts. ChemNanoMat, 2020, 6, 1208-1219.	2.8	6
99	Multicationic Sr4Mn3O10 mesostructures: molten salt synthesis, analytical electron microscopy study and reactivity. Materials Horizons, 2018, 5, 480-485.	12.2	5
100	Alkoxysilane effect in hybrid material: A comparison of pHEMA-TiO2 and pMAPTMS-TiO2 nanoparticulate hybrids. Materials Research Bulletin, 2019, 114, 130-137.	5.2	5
101	Hierarchy: enhancing performances beyond limits. National Science Review, 2020, 7, 1624-1625.	9.5	5
102	Exceptional Low-Temperature CO Oxidation over Noble-Metal-Free Iron-Doped Hollandites: An In-Depth Analysis of the Influence of the Defect Structure on Catalytic Performance. ACS Catalysis, 2021, 11, 15026-15039.	11.2	5
103	A Confinementâ€Đriven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media. Small, 2022, 18, e2200414.	10.0	5
104	Tunable Magnetic Properties of (Gd,Ce) ₂ O ₂ S Oxysulfide Nanoparticles. European Journal of Inorganic Chemistry, 2019, 2019, 762-765.	2.0	4
105	Interlayer Silylation of Layered Octosilicate with Organoalkoxysilanes: Effects of Tetrabutylammonium Fluoride as a Catalyst and the Functional Groups of Silanes. European Journal of Inorganic Chemistry, 2021, 2021, 1836-1845.	2.0	4
106	Different Reactivity of Rutile and Anatase TiO ₂ Nanoparticles: Synthesis and Surface States of Nanoparticles of Mixedâ€Valence Magnéli Oxides. Chemistry - A European Journal, 2019, 25, 11114-11120.	3.3	3
107	Correlative Microscopy Insight on Electrodeposited Ultrathin Graphite Oxide Films. Journal of Physical Chemistry Letters, 2020, 11, 9117-9122.	4.6	3
108	Early transition metal nano-carbides and nano-hydrides from solid-state metathesis initiated at room temperature. Green Chemistry, 2021, 23, 6431-6448.	9.0	3

#	Article	IF	CITATIONS
109	Liquid-Phase Synthesis, Sintering, and Transport Properties of Nanoparticle-Based Boron-Rich Composites. Chemistry of Materials, 2021, 33, 2099-2109.	6.7	3
110	Shedding Light on Functional Hybrid Nanocomposites 19th Century Paint Medium. Advanced Functional Materials, 2022, 32, 2106346.	14.9	3
111	Dumbbell-Shaped T8 -POSS with Functional Organic Linkers. European Journal of Inorganic Chemistry, 2019, 2019, 3148-3156.	2.0	2
112	Hydroxyapatites as Versatile Inorganic Hosts of Unusual Pentavalent Manganese Cations. Chemistry of Materials, 2020, 32, 10584-10593.	6.7	2
113	SPRAY DRYING: A VERSATILE ROUTE FOR THE PREPARATION OF NEW ACIDIC MESOSTRUCTURED POWDERS. , 2008, , .		2
114	Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applications. ACS Applied Nano Materials, 2022, 5, 1917-1924.	5.0	2
115	Interdiffusive Surfactant Procedure for the Preparation of Nanoarchitectured Porous Films: Application to the Growth of Titania Thin Films on Silicon Substrates. Langmuir, 2019, 35, 7169-7174.	3.5	1
116	Investigating Nineteenth Century Gel Mediums: From Historical Recipes to Model Systems. Studies in Conservation, 0, , 1-8.	1.1	1
117	Tunable Magnetic Properties of (Gd,Ce) ₂ O ₂ S Oxysulfide Nanoparticles. European Journal of Inorganic Chemistry, 2019, 2019, 741-741.	2.0	Ο
118	Ultrasoundâ€Assisted Liquidâ€Phase Synthesis and Mechanical Properties of Aluminum Matrix Nanocomposites Incorporating Boride Nanocrystals. Small, 2021, , 2104091.	10.0	0
119	From waste incineration by-products to functional materials: a "Chimie douce―route to VOCs mineral adsorbents. Journal of Sol-Gel Science and Technology, 0, , 1.	2.4	0