
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5471067/publications.pdf Version: 2024-02-01

Δεινοίδ3ν Μορτε

#	Article	IF	CITATIONS
1	Desert truffle mycorrhizosphere harbors organic acid releasing plant growth–promoting rhizobacteria, essentially during the truffle fruiting season. Mycorrhiza, 2022, 32, 193.	2.8	4
2	Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods, 2022, 11, 298.	4.3	8
3	Desert truffle genomes reveal their reproductive modes and new insights into plant–fungal interaction and ectendomycorrhizal lifestyle. New Phytologist, 2021, 229, 2917-2932.	7.3	19
4	Fungal Planet description sheets: 1182–1283. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2021, , .	4.4	40
5	Cultivation of Desert Truffles—A Crop Suitable for Arid and Semi-Arid Zones. Agronomy, 2021, 11, 1462.	3.0	7
6	Different patterns in root and soil fungal diversity drive plant productivity of the desert truffle <i>Terfezia claveryi</i> in plantation. Environmental Microbiology, 2021, 23, 5917-5933.	3.8	9
7	Supercritical CO2 extraction method of aromatic compounds from truffles. LWT - Food Science and Technology, 2021, 150, 111954.	5.2	19
8	Desert Truffles (Terfezia spp.) Breeding. , 2021, , 479-504.		1
9	Fungal Planet description sheets: 1042–1111. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2020, 44, 301-459.	4.4	91
10	Elevated atmospheric CO 2 modifies responses to waterâ€stress and flowering of Mediterranean desert truffle mycorrhizal shrubs. Physiologia Plantarum, 2020, 170, 537-549.	5.2	6
11	Spring stomatal response to vapor pressure deficit as a marker for desert truffle fruiting. Mycorrhiza, 2020, 30, 503-512.	2.8	10
12	Advances in Desert Truffle Mycorrhization and Cultivation. , 2020, , 205-219.		6
13	Purification and characterization of Terfezia claveryi TcCAT-1, a desert truffle catalase upregulated in mycorrhizal symbiosis. PLoS ONE, 2019, 14, e0219300.	2.5	8
14	The crop of desert truffle depends on agroclimatic parameters during two key annual periods. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	13
15	Solving the identity of Terfezia trappei (Pezizaceae, Ascomycota). Phytotaxa, 2019, 411, 230-236.	0.3	1
16	Fungal Planet description sheets: 951–1041. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2019, 43, 223-425.	4.4	126
17	The first comprehensive phylogenetic and biochemical analysis of NADH diphosphatases reveals that the enzyme from Tuber melanosporum is highly active towards NAD+. Scientific Reports, 2019, 9, 16753.	3.3	1
18	Typification of Terfezia fanfani (Ascomycota, Pezizaceae). Phytotaxa, 2019, 387, 73.	0.3	2

#	Article	IF	CITATIONS
19	Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization. Journal of Plant Physiology, 2019, 232, 301-310.	3.5	10
20	Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants. Mycorrhiza, 2018, 28, 691-701.	2.8	12
21	Terfezia lusitanica, a new mycorrhizal species associated to Tuberaria guttata (Cistaceae). Phytotaxa, 2018, 357, 141.	0.3	6
22	Identification of an Alternative rRNA Post-transcriptional Maturation of 26S rRNA in the Kingdom Fungi. Frontiers in Microbiology, 2018, 9, 994.	3.5	4
23	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	3.8	45
24	Fungal Planet description sheets: 716–784. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2018, 40, 239-392.	4.4	142
25	Significance of oxygen transport through aquaporins. Scientific Reports, 2017, 7, 40411.	3.3	76
26	Basic and Applied Research for Desert Truffle Cultivation. , 2017, , 23-42.		14
27	Fungal Planet description sheets: 558–624. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2017, 38, 240-384.	4.4	126
28	Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza, 2016, 26, 769-779.	2.8	29
29	In vitro adventitious organogenesis and histological characterization from mature nodal explants of Citrus limon. In Vitro Cellular and Developmental Biology - Plant, 2016, 52, 161-173.	2.1	15
30	Two new Terfezia species from Southern Europe. Phytotaxa, 2015, 230, 239.	0.3	19
31	CHARACTERIZATION OF THE ARUM-TYPE MYCORRHIZA IN CITRUS MACROPHYLLA WESTER ROOTSTOCK UNDER SALT STRESS. Acta Horticulturae, 2015, , 1343-1350.	0.2	0
32	PHYSIOLOGICAL RESPONSE OF CITRUS MACROPHYLLA INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI UNDER SALT STRESS. Acta Horticulturae, 2015, , 1351-1358.	0.2	1
33	How Root Structure Defines the Arbuscular Mycorrhizal Symbiosis and What We Can Learn from It?. Soil Biology, 2014, , 145-169.	0.8	9
34	Domestication: Preparation of Mycorrhizal Seedlings. Soil Biology, 2014, , 343-365.	0.8	15
35	Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 2014, 171, 76-85.	3.5	104
36	Hypogeous fungi in Mediterranean maquis, arid and semi-arid forests. Plant Biosystems, 2014, 148, 392-401.	1.6	24

#	Article	IF	CITATIONS
37	Enzymes in Terfezia claveryi Ascocarps. Soil Biology, 2014, , 243-260.	0.8	2
38	Preparation and Maintenance of Both Man-Planted and Wild Plots. Soil Biology, 2014, , 367-387.	0.8	9
39	Expression Analysis of Aquaporins from Desert Truffle Mycorrhizal Symbiosis Reveals a Fine-Tuned Regulation Under Drought. Molecular Plant-Microbe Interactions, 2013, 26, 1068-1078.	2.6	48
40	Mycelium growth stimulation of the desert truffle <i>Terfezia claveryi</i> chatin by β yclodextrin. Biotechnology Progress, 2013, 29, 1558-1564.	2.6	9
41	Five new <i>Terfezia</i> species from the Iberian Peninsula. Mycotaxon, 2013, 124, 189-208.	0.3	26
42	The Aquaporin <i>TcAQP1</i> of the Desert Truffle <i>Terfezia claveryi</i> Is a Membrane Pore for Water and CO ₂ Transport. Molecular Plant-Microbe Interactions, 2012, 25, 259-266.	2.6	33
43	The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza, 2012, 22, 565-575.	2.8	33
44	Terfezia Cultivation in Arid and Semiarid Soils. Soil Biology, 2012, , 241-263.	0.8	20
45	PARTIAL PURIFICATION AND CHARACTERIZATION OF A CALCIUMâ€DEPENDENT ALKALINE PHOSPHATASE FROM THE CYANOBACTERIUM <i>ARTHROSPIRA PLATENSIS</i> ¹ . Journal of Phycology, 2012, 48, 347-354.	2.3	8
46	ARBUSCULAR MYCORRHIZAL FUNGI INFLUENCE THE RESPONSE OF CITRUS ROOTSTOCK SEEDLINGS TO SALINITY. Acta Horticulturae, 2011, , 245-252.	0.2	0
47	Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza, 2011, 21, 53-64.	2.8	60
48	Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Mycorrhiza, 2011, 21, 247-253.	2.8	33
49	Comparative study of mycorrhizal susceptibility and anatomy of four palm species. Mycorrhiza, 2010, 20, 103-115.	2.8	28
50	Physiological parameters of desert truffle mycorrhizal Helianthemun almeriense plants cultivated in orchards under water deficit conditions. Symbiosis, 2010, 52, 133-139.	2.3	37
51	The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L Environmental and Experimental Botany, 2009, 66, 362-371.	4.2	28
52	Partial purification, characterisation and histochemical localisation of alkaline phosphatase from ascocarps of the edible desert truffleTerfezia claveryiChatin. Plant Biology, 2009, 11, 678-685.	3.8	11
53	Desert Truffle Cultivation in Semiarid Mediterranean Areas. , 2009, , 221-233.		26
54	Use of the Autofluorescence Properties of AM Fungi for AM Assessment and Handling. Soil Biology, 2009, , 123-140.	0.8	6

#	Article	IF	CITATIONS
55	Peroxidase changes in Phoenix dactylifera palms inoculated with mycorrhizal and biocontrol fungi. Agronomy for Sustainable Development, 2008, 28, 411-418.	5.3	4
56	Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots. Physiologia Plantarum, 2008, 132, 503-513.	5.2	15
57	Autofluorescence detection of arbuscular mycorrhizal fungal structures in palm roots: an underestimated experimental method. Mycological Research, 2006, 110, 887-897.	2.5	40
58	Kinetic Properties of Lipoxygenase from Desert Truffle (Terfezia claveryiChatin) Ascocarps:Â Effect of Inhibitors and Activators. Journal of Agricultural and Food Chemistry, 2005, 53, 6140-6145.	5.2	18
59	Characterization and Histochemical Localization of Nonspecific Esterase from Ascocarps of Desert Truffle (Terfezia claveryiChatin). Journal of Agricultural and Food Chemistry, 2005, 53, 5754-5759.	5.2	10
60	Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus. New Phytologist, 2004, 161, 495-501.	7.3	51
61	Histochemical and biochemical evidences of the reversibility of tyrosinase activation by SDS. Plant Science, 2004, 166, 365-370.	3.6	14
62	Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. Journal of Plant Physiology, 2004, 161, 675-682.	3.5	132
63	Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza, 2003, 13, 299-307.	2.8	81
64	proximate composition and fatty acids. Journal of the Science of Food and Agriculture, 2003, 83, 535-541.	3.5	51
65	Effects of high vineyard temperatures on the grapevine leafroll associated virus elimination from Vitis vinifera L. cv. Napoleon tissue cultures. Scientia Horticulturae, 2003, 97, 289-296.	3.6	37
66	Effet du stress salin en milieu hydroponique sur le trÃʿfle inoculé par le Rhizobium. Agronomy for Sustainable Development, 2003, 23, 553-560.	0.8	14
67	Réponses physiologiques et biochimiques du trÃ [~] fle (Trifolium alexandrinum L.) à la double association Mycorhizes-Rhizobium sous une contrainte saline. Agronomy for Sustainable Development, 2003, 23, 571-580.	0.8	32
68	Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. Journal of Agricultural Science, 2002, 138, 387-393.	1.3	65
69	Partial Purification, Characterization, and Histochemical Localization of Fully Latent Desert Truffle (Terfezia ClaveryiChatin) Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 2001, 49, 1922-1927.	5.2	40
70	Monophenolase activity of latentTerfezia claveryityrosinase: Characterization and histochemical localization. Physiologia Plantarum, 2001, 113, 203-209.	5.2	13
71	Growth and Water Relations in Mycorrhizal and Nonmycorrhizal Pinus Halepensis Plants in Response to Drought. Biologia Plantarum, 2001, 44, 263-267.	1.9	55
72	Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza, 2000, 10, 115-119.	2.8	142

#	Article	IF	CITATIONS
73	Development of mycorrhizal infection in in vitro-and in vivo-formed roots of woody fruit plants. Agronomy for Sustainable Development, 1996, 16, 621-624.	0.8	7
74	Effect of arbuscular mycorrhizal inoculation on micropropagated Tetraclinis articulata growth and survival. Agronomy for Sustainable Development, 1996, 16, 633-637.	0.8	13
75	Use of gentian violet to differentiate in vitro and ex vitro-formed roots during acclimatization of grapevine. Plant Cell, Tissue and Organ Culture, 1995, 41, 187-188.	2.3	9
76	Micropropagation of Tetraclinis articulata (Vahl) Masters (Cupressaceae). Plant Cell, Tissue and Organ Culture, 1992, 28, 231-233.	2.3	7
77	In vitro propagation of Helianthemum almeriense Pau (Cistaceae). Agronomy for Sustainable Development, 1992, 12, 807-809.	0.8	21