Ji Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5470549/publications.pdf

Version: 2024-02-01

		279798	223800
52	2,215	23	46
papers	citations	h-index	g-index
54	54	54	1657
all docs	docs citations	times ranked	citing authors

#	Article	lF	Citations
1	Offspring production of haploid spermatid-like cells derived from mouse female germline stem cells with chromatin condensation. Cell and Bioscience, 2022, 12, 5.	4.8	4
2	Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties of mouse female germline stem cells. Cellular and Molecular Life Sciences, 2022, 79, 22.	5.4	7
3	<i>Stella</i> Regulates the Development of Female Germline Stem Cells by Modulating Chromatin Structure and DNA Methylation. International Journal of Biological Sciences, 2022, 18, 3006-3018.	6.4	6
4	Ubiquitin-Specific-Processing Protease 7 Regulates Female Germline Stem Cell Self-Renewal Through DNA Methylation. Stem Cell Reviews and Reports, 2021, 17, 938-951.	3.8	3
5	C28 induced autophagy of female germline stem cells in vitro with changes of H3K27 acetylation and transcriptomics. Gene, 2021, 766, 145150.	2.2	5
6	Novel circGFRα1 Promotes Self-Renewal of Female Germline Stem Cells Mediated by m6A Writer METTL14. Frontiers in Cell and Developmental Biology, 2021, 9, 640402.	3.7	19
7	Spermidine induces cytoprotective autophagy of female germline stem cells in vitro and ameliorates aging caused by oxidative stress through upregulated sequestosome-1/p62 expression. Cell and Bioscience, 2021, 11, 107.	4.8	23
8	Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. Journal of Advanced Research, 2021, 33, 81-98.	9.5	17
9	Serum- and Feeder-Free Culture of Juvenile Monkey Female Germline Stem Cells and Testosterone Regulation of their Self-Renewal. Stem Cell Reviews and Reports, 2021, , 1.	3.8	4
10	Generation of offspring-producing 3D ovarian organoids derived from female germline stem cells and their application in toxicological detection. Biomaterials, 2021, 279, 121213.	11.4	29
11	Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Frontiers in Cell and Developmental Biology, 2020, 8, 555.	3.7	4
12	Alternative splicing signatures in preimplantation embryo development. Cell and Bioscience, 2020, 10, 33.	4.8	16
13	GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells InÂVitro. Molecular Therapy - Nucleic Acids, 2019, 17, 436-447.	5.1	16
14	C89 Induces Autophagy of Female Germline Stem Cells via Inhibition of the PI3K-Akt Pathway In Vitro. Cells, 2019, 8, 606.	4.1	11
15	MicroRNA-322 Regulates Self-renewal of Mouse Spermatogonial Stem Cells through <i>Rassf8</i> International Journal of Biological Sciences, 2019, 15, 857-869.	6.4	29
16	Genome-wide identification and characterization of long noncoding and circular RNAs in germline stem cells. Scientific Data, 2019, 6, 8.	5.3	14
17	Molecular characteristics of early-stage female germ cells revealed by RNA sequencing of low-input cells and analysis of genome-wide DNA methylation. DNA Research, 2019, 26, 105-117.	3.4	26
18	Dynein axonemal intermediate chain 2 plays a role in gametogenesis by activation of Stat3. Journal of Cellular and Molecular Medicine, 2019, 23, 417-425.	3.6	7

#	Article	IF	CITATIONS
19	Comparison of different in vitro differentiation conditions for murine female germline stem cells. Cell Proliferation, 2019, 52, e12530.		22
20	Circular RNA expression profiles of mouse ovaries during postnatal development and the function of circular RNA epidermal growth factor receptor in granulosa cells. Metabolism: Clinical and Experimental, 2018, 85, 192-204.	3.4	47
21	Effects of bisphenol A on ovarian follicular development and female germline stem cells. Archives of Toxicology, 2018, 92, 1581-1591.	4.2	40
22	Compared proteomic analysis of 8―and 32â€weekâ€old postnatal porcine ovaries. Cell Biochemistry and Function, 2018, 36, 34-42.	2.9	3
23	Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clinical Epigenetics, 2018, 10, 48.	4.1	77
24	Oocyte-G1 promotes male germ cell apoptosis through activation of Caspase-3. Gene, 2018, 670, 22-30.	2.2	7
25	Characteristics of Female Germline Stem Cells from Porcine Ovaries at Sexual Maturity. Cell Transplantation, 2018, 27, 1195-1202.	2.5	19
26	MicroRNAâ€10b regulates the renewal of spermatogonial stem cells through Kruppelâ€like factor 4. Cell Biochemistry and Function, 2017, 35, 184-191.	2.9	24
27	Tracing and Characterizing the Development of Transplanted Female Germline Stem Cells InÂVivo. Molecular Therapy, 2017, 25, 1408-1419.	8.2	65
28	Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells. Oncotarget, 2017, 8, 26573-26590.	1.8	64
29	Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Scientific Reports, 2016, 6, 28218.	3.3	75
30	Production of offspring from a germline stem cell line derived from prepubertal ovaries of germline reporter mice. Molecular Human Reproduction, 2016, 22, 457-464.	2.8	47
31	Integrative epigenomic analysis reveals unique epigenetic signatures involved in unipotency of mouse female germline stem cells. Genome Biology, 2016, 17, 162.	8.8	61
32	Stem Cells in Mammalian Gonads. Results and Problems in Cell Differentiation, 2016, 58, 289-307.	0.7	6
33	In vitro Differentiation of Germ Cells from Stem Cells. Current Molecular Pharmacology, 2016, 9, 305-310.	1.5	2
34	Stem Cells, Progenitor Cells, and Lineage Decisions in the Ovary. Endocrine Reviews, 2015, 36, 65-91.	20.1	97
35	Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. Journal of Molecular Cell Biology, 2014, 6, 164-171.	3.3	41
36	Production of fat-1 transgenic rats using a post-natal female germline stem cell line. Molecular Human Reproduction, 2014, 20, 271-281.	2.8	109

#	Article	IF	Citations
37	Similar morphological and molecular signatures shared by female and male germline stem cells. Scientific Reports, 2014, 4, 5580.	3.3	42
38	Improved Efficiency of Female Germline Stem Cell Purification Using Fragilis-Based Magnetic Bead Sorting. Stem Cells and Development, 2011, 20, 2197-2204.	2.1	92
39	Production of transgenic mice by random recombination of targeted genes in female germline stem cells. Journal of Molecular Cell Biology, 2011, 3, 132-141.	3.3	97
40	Molecular cloning and expression of a new gene, GON-SJTU1 in the rat testis. Reproductive Biology and Endocrinology, 2010, 8, 43.	3.3	1
41	Molecular cloning and characterization of a new gene, <i>Oocyteâ€G1</i> . Journal of Cellular Physiology, 2009, 218, 75-83.	4.1	12
42	Generation of mice by transplantation of an adult spermatogonial cell line after cryopreservation. Cell Proliferation, 2009, 42, 123-131.	5.3	37
43	Production of offspring from a germline stem cell line derived from neonatal ovaries. Nature Cell Biology, 2009, 11, 631-636.	10.3	529
44	Short-type PB-cadherin promotes self-renewal of spermatogonial stem cells via multiple signaling pathways. Cellular Signalling, 2008, 20, 1052-1060.	3.6	32
45	Mouse Dynein Axonemal Intermediate Chain 2: Cloning and Expression. DNA and Cell Biology, 2008, 27, 479-488.	1.9	11
46	Role of follicle stimulating hormone and epidermal growth factor in the development of porcine preantral follicle <i>in vitro</i> . Zygote, 2007, 15, 233-240.	1.1	35
47	Effects of luteinizing hormone and follicle stimulating hormone on the developmental competence of porcine preantral follicle oocytes grown in vitro. Journal of Assisted Reproduction and Genetics, 2007, 24, 419-424.	2.5	43
48	In Vitro Growth, Maturation, Fertilization, and Embryonic Development of Oocytes from Porcine Preantral Follicles. Biology of Reproduction, 2001, 64, 375-381.	2.7	141
49	Development of In Vitro-Matured Oocytes from Porcine Preantral Follicles Following Intracytoplasmic Sperm Injection. Biology of Reproduction, 2001, 65, 1579-1585.	2.7	47
50	Luteinizing Hormone Has a Stage-Limited Effect on Preantral Follicle Development In Vitro1. Biology of Reproduction, 2000, 63, 320-327.	2.7	46
51	Retinoic acid induced meiosis initiation in female germline stem cells by remodelling threeâ€dimensional chromatin structure. Cell Proliferation, 0, , .	5.3	2
52	Daidzein Activates Akt Pathway to Promote the Proliferation of Female Germline Stem Cells through Upregulating Clec11a. Stem Cell Reviews and Reports, 0, , .	3.8	1