Peter Ferdinandy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5470405/publications.pdf

Version: 2024-02-01

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning. Pharmacological Reviews, 2007, 59, 418-458.	7.1	631
2	Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacological Reviews, 2014, 66, 1142-1174.	7.1	521
3	Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PLoS ONE, 2015, 10, e0145686.	1.1	493
4	Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2019, 73, 89-99.	1.2	484
5	Postconditioning and protection from reperfusion injury: where do we stand? * Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2010, 87, 406-423.	1.8	447
6	Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 2016, 6, 24316.	1.6	382
7	Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. British Journal of Pharmacology, 2003, 138, 532-543.	2.7	378
8	Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1453-H1467.	1.5	377
9	Heat shock proteins as emerging therapeutic targets. British Journal of Pharmacology, 2005, 146, 769-780.	2.7	337
10	Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Research in Cardiology, $2018,113,39.$	2.5	311
11	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
12	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	1.8	278
13	Ischaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	2.5	257
14	Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. Journal of Molecular and Cellular Cardiology, 2014, 68, 75-78.	0.9	238
15	Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 232-242.	1.8	232
16	Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study. Journal of Translational Medicine, 2015, 13, 1.	1.8	229
17	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
18	Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2013, 98, 7-27.	1.8	209

#	Article	IF	Citations
19	Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection., 2015, 153, 90-106.		194
20	Matrix Metalloproteinase Inhibitors. Drugs, 2010, 70, 949-964.	4.9	163
21	The role of gasotransmitters <scp><scp>NO</scp></scp> , <scp><scp>H₂S</scp></scp> and <scp><co>H₂S</co></scp> arrayburg-nc-4 scp> <co>H₂SS</co>	2.7	163
22	B-type natriuretic peptide limits infarct size in rat isolated hearts via K _{ATP} channel opening. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1592-H1600.	1.5	161
23	MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. Journal of Molecular and Cellular Cardiology, 2013, 62, 111-121.	0.9	157
24	Isolation of High-Purity Extracellular Vesicles by the Combination of Iodixanol Density Gradient Ultracentrifugation and Bind-Elute Chromatography From Blood Plasma. Frontiers in Physiology, 2018, 9, 1479.	1.3	153
25	The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovascular Research, 2019, 115, 1143-1155.	1.8	151
26	Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts. Cardiovascular Research, 2003, 58, 663-670.	1.8	146
27	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	1.8	143
28	Matrix metalloproteinase activity assays: Importance of zymography. Journal of Pharmacological and Toxicological Methods, 2010, 61, 205-209.	0.3	138
29	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
30	Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1108-H1115.	1.5	127
31	Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovascular Research, 2003, 57, 426-433.	1.8	119
32	ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. European Heart Journal, 2017, 38, 2392-2411.	1.0	118
33	Loss of Pacing-induced Preconditioning in Rat Hearts: Role of Nitric Oxide and Cholesterol-enriched Diet. Journal of Molecular and Cellular Cardiology, 1997, 29, 3321-3333.	0.9	116
34	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
35	Hyperlipidemia Attenuates the Infarct Size-Limiting Effect of Ischemic Preconditioning: Role of Matrix Metalloproteinase-2 Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 154-161.	1.3	109
36	MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H216-H227.	1.5	106

#	Article	IF	CITATIONS
37	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	1.8	106
38	Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Research in Cardiology, 2015, 110, 453.	2.5	103
39	Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovascular Research, 2007, 76, 100-109.	1.8	96
40	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
41	Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. European Heart Journal, 2019, 40, 1771-1777.	1.0	88
42	Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Research in Cardiology, 2010, 105, 643-650.	2.5	83
43	Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1729-H1735.	1.5	82
44	Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Letters, 2003, 536, 35-40.	1.3	76
45	IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Research in Cardiology, 2021, 116, 52.	2.5	73
46	Cardioprotective effects of glyceryl trinitrate: beyond vascular nitrate tolerance., 2005, 105, 57-68.		72
47	Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H927-H943.	1.5	72
48	Effect of hypercholesterolaemia on myocardial function, ischaemia–reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. British Journal of Pharmacology, 2017, 174, 1555-1569.	2.7	71
49	Hypercholesterolemia Attenuates the Anti-ischemic Effect of Preconditioning During Coronary Angioplasty. Chest, 2005, 128, 1623-1628.	0.4	64
50	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
51	Peroxynitrite: just an oxidative/nitrosative stressor or a physiological regulator as well?. British Journal of Pharmacology, 2006, 148, 1-3.	2.7	63
52	Lovastatin interferes with the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2406-H2409.	1.5	62
53	Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovascular Diabetology, 2015, 14, 151.	2.7	60
54	Myocardial ischaemia/reperfusion injury and preconditioning: effects of hypercholesterolaemia/hyperlipidaemia. British Journal of Pharmacology, 2003, 138, 283-285.	2.7	59

#	Article	IF	CITATIONS
55	Hyperlipidemia Induced by High Cholesterol Diet Inhibits Heat Shock Response in Rat Hearts. Biochemical and Biophysical Research Communications, 2002, 290, 1535-1538.	1.0	58
56	Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochemical and Biophysical Research Communications, 2002, 296, 937-941.	1.0	58
57	The role of mitochondrial reactive oxygen species, NO and H ₂ S in ischaemia/reperfusion injury and cardioprotection. Journal of Cellular and Molecular Medicine, 2020, 24, 6510-6522.	1.6	58
58	Measurement of myocardial infarct size in preclinical studies. Journal of Pharmacological and Toxicological Methods, 2010, 61, 163-170.	0.3	56
59	Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovascular Diabetology, 2013, 12, 16.	2.7	56
60	New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. British Journal of Pharmacology, 2017, 174, 1690-1703.	2.7	56
61	Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovascular Research, 2015, 108, 39-49.	1.8	54
62	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	1.8	53
63	Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1907-H1913.	1.5	52
64	Pulmonary hypertension in chronic obstructive pulmonary disease. British Journal of Pharmacology, 2021, 178, 132-151.	2.7	51
65	Cholesterol diet-induced hyperlipidemia influences gene expression pattern of rat hearts: a DNA microarray study. FEBS Letters, 2004, 562, 99-104.	1.3	50
66	Nitrite in organ protection. British Journal of Pharmacology, 2014, 171, 1-11.	2.7	49
67	Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. Journal of Clinical Medicine, 2019, 8, 98.	1.0	49
68	Capsaicinâ€sensitive sensory neurons regulate myocardial function and gene expression pattern of rat hearts: a DNA microarray study. FASEB Journal, 2006, 20, 160-162.	0.2	48
69	Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radical Biology and Medicine, 2021, 169, 446-477.	1.3	48
70	Preconditioning Decreases Ischemia/Reperfusion-Induced Peroxynitrite Formation. Biochemical and Biophysical Research Communications, 2001, 285, 1217-1219.	1.0	47
71	Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. British Journal of Pharmacology, 2017, 174, 1570-1590.	2.7	46
72	MMP Inhibitors in Cardiac Diseases: An Update. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 186-194.	1.5	43

#	Article	IF	CITATIONS
73	Preconditioning protects the heart in a prolonged uremic condition. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1229-H1236.	1.5	43
74	Hyperlipidaemia and cardioprotection: Animal models for translational studies. British Journal of Pharmacology, 2020, 177, 5287-5311.	2.7	43
75	Cardiac capsaicinâ€sensitive sensory nerves regulate myocardial relaxation via <i>S</i> \$\frac{1}{0}\$\$\alpha\$\$\in \text{i}\$\$\text{of i}\$\$\text{of i}\$\text{of i}\$\$\text{of i}\$\$\text{of i}\$\$\text{of i}\$\$\text{of i}\$\text{of i}\$\text{of i}\$\$\text{of i}\$\text{of i}\$\text{of i}\$\tex	2.7	42
76	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research†Basic Research in Cardiology, 2016, 111, 69.	2. 5	41
77	Functional Genomics of Cardioprotection by Ischemic Conditioning and the Influence of Comorbid Conditions: Implications in Target Identification. Current Drug Targets, 2015, 16, 904-911.	1.0	41
78	Nitric Oxide, Peroxynitrite and cGMP in Atherosclerosis-Induced Hypertension in Rabbits: Beneficial Effects of Cicletanine. Journal of Vascular Research, 2001, 38, 39-46.	0.6	39
79	Role of iNOS and peroxynitrite–matrix metalloproteinase-2 signaling in myocardial late preconditioning in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H512-H518.	1.5	39
80	Moderate inhibition of myocardial matrix metalloproteinase-2 by ilomastat is cardioprotective. Pharmacological Research, 2014, 80, 36-42.	3.1	38
81	Serum lipids and cardiac function correlate with nitrotyrosine and <scp>MMP</scp> activity in coronary artery disease patients. European Journal of Clinical Investigation, 2015, 45, 692-701.	1.7	38
82	Delayed Cardiac Protection Against Harmful Consequences of Stress can be Induced in Experimental Atherosclerosis in Rabbits. Journal of Molecular and Cellular Cardiology, 1997, 29, 1977-1983.	0.9	35
83	Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovascular Research, 2013, 99, 121-128.	1.8	35
84	Pharmacology of the â€~gasotransmitters' <scp>NO</scp> , <scp>CO</scp> and <scp>H₂S</scp> : translational opportunities. British Journal of Pharmacology, 2015, 172, 1395-1396.	2.7	35
85	Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: Role of nitric oxide. Journal of Molecular and Cellular Cardiology, 2010, 48, 649-652.	0.9	34
86	Cardioprotection by gene therapy. International Journal of Cardiology, 2015, 191, 203-210.	0.8	34
87	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	1.8	34
88	Cholesterol-enriched diet inhibits cardioprotection by ATP-sensitive K ⁺ channel activators cromakalim and diazoxide. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H405-H413.	1.5	33
89	Specific Mechanisms Underlying Right Heart Failure: The Missing Upregulation of Superoxide Dismutase-2 and Its Decisive Role in Antioxidative Defense. Antioxidants and Redox Signaling, 2015, 23, 1220-1232.	2.5	33
90	Sequential activation of different pathway networks in ischemia-affected and non-affected myocardium, inducing intrinsic remote conditioning to prevent left ventricular remodeling. Scientific Reports, 2017, 7, 43958.	1.6	33

#	Article	IF	Citations
91	Title is missing!. Molecular and Cellular Biochemistry, 1998, 186, 27-34.	1.4	32
92	Lack of correlation between myocardial nitric oxide and cyclic guanosine monophosphate content in both nitrate-tolerant and -nontolerant rats. Biochemical Pharmacology, 1998, 56, 1139-1144.	2.0	32
93	Therapeutic potential of midkine in cardiovascular disease. British Journal of Pharmacology, 2014, 171, 936-944.	2.7	32
94	Alternative Splicing of NOX4 in the Failing Human Heart. Frontiers in Physiology, 2017, 8, 935.	1.3	32
95	Direct myocardial anti-ischaemic effect of GTN in both nitrate-tolerant and nontolerant rats: a cyclic GMP-independent activation of KATP. British Journal of Pharmacology, 1999, 128, 1427-1434.	2.7	31
96	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
97	Dietary red palm oil supplementation reduces myocardial infarct size in an isolated perfused rat heart model. Lipids in Health and Disease, 2010, 9, 64.	1.2	29
98	Recent Developments in Cardiovascular Stem Cells. Circulation Research, 2014, 115, e71-8.	2.0	29
99	In vivo MRI and ex vivo histological assessment of the cardioprotection induced by ischemic preconditioning, postconditioning and remote conditioning in a closed-chest porcine model of reperfused acute myocardial infarction: importance of microvasculature. Journal of Translational Medicine. 2017. 15. 67.	1.8	29
100	Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats. Cardiovascular Diabetology, 2016, 15, 110.	2.7	28
101	Effect of Ischemic Preconditioning and Postconditioning on Exosome-Rich Fraction microRNA Levels, in Relation with Electrophysiological Parameters and Ventricular Arrhythmia in Experimental Closed-Chest Reperfused Myocardial Infarction. International Journal of Molecular Sciences, 2019, 20, 2140.	1.8	28
102	Perspectives on Directions and Priorities for Future Preclinical Studies in Regenerative Medicine. Circulation Research, 2019, 124, 938-951.	2.0	28
103	Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology and Medicine, 2021, 166, 33-52.	1.3	28
104	MMP Activity Detection in Zymograms. Methods in Molecular Biology, 2017, 1626, 53-70.	0.4	26
105	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26
106	Nitrate tolerance does not increase production of peroxynitrite in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H69-H76.	1.5	25
107	Hypercholesterolemia downregulates autophagy in the rat heart. Lipids in Health and Disease, 2017, 16, 60.	1.2	25
108	Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats. Thrombosis and Haemostasis, 2015, 113, 482-493.	1.8	24

#	Article	lF	Citations
109	PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Frontiers in Physiology, 2020, 11, 602497.	1.3	24
110	Survival pathways in cardiac conditioning: individual data vs. meta-analyses. What do we learn?. Basic Research in Cardiology, 2018, 113, 4.	2.5	23
111	Systematic review and network analysis of microRNAs involved in cardioprotection against myocardial ischemia/reperfusion injury and infarction: Involvement of redox signalling. Free Radical Biology and Medicine, 2021, 172, 237-251.	1.3	23
112	Ventricular Overdrive Pacing-Induced Preconditioning and No-Flow Ischemia-Induced Preconditioning in Isolated Working Rat Hearts. Journal of Cardiovascular Pharmacology, 1995, 25, 97-104.	0.8	22
113	Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling. European Journal of Pharmacology, 2003, 476, 107-113.	1.7	22
114	Dietary red palm oil supplementation decreases infarct size in cholesterol fed rats. Lipids in Health and Disease, 2011, 10, 103.	1.2	22
115	A comprehensive time course and correlation analysis of indomethacin-induced inflammation, bile acid alterations and dysbiosis in the rat small intestine. Biochemical Pharmacology, 2021, 190, 114590.	2.0	22
116	Cardioprotection by Farnesol: Role of the Mevalonate Pathway. Cardiovascular Drugs and Therapy, 2013, 27, 269-277.	1.3	21
117	Myocardial Postconditioning Is Lost in Vascular Nitrate Tolerance. Journal of Cardiovascular Pharmacology, 2013, 62, 298-303.	0.8	19
118	Isolated hypercholesterolemia leads to steatosis in the liver without affecting the pancreas. Lipids in Health and Disease, 2017, 16, 144.	1.2	19
119	AlM2-driven inflammasome activation in heart failure. Cardiovascular Research, 2021, 117, 2639-2651.	1.8	19
120	Effect of a multivitamin preparation supplemented with phytosterol on serum lipids and infarct size in rats fed with normal and high cholesterol diet. Lipids in Health and Disease, 2013, 12, 138.	1.2	18
121	Novel, selective EPO receptor ligands lacking erythropoietic activity reduce infarct size in acute myocardial infarction in rats. Pharmacological Research, 2016, 113, 62-70.	3.1	18
122	MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium. Scientific Reports, 2018, 8, 10134.	1.6	18
123	Capsaicin-Sensitive Sensory Nerves and the TRPV1 Ion Channel in Cardiac Physiology and Pathologies. International Journal of Molecular Sciences, 2020, 21, 4472.	1.8	18
124	Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. Journal of Molecular and Cellular Cardiology, 2019, 131, 171-186.	0.9	17
125	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	1.8	17
126	Sensory Neuropathy Affects Cardiac miRNA Expression Network Targeting IGF-1, SLC2a-12, EIF-4e, and ULK-2 mRNAs. International Journal of Molecular Sciences, 2019, 20, 991.	1.8	16

#	Article	IF	CITATIONS
127	Hidden Cardiotoxicity of Rofecoxib Can be Revealed in Experimental Models of Ischemia/Reperfusion. Cells, 2020, 9, 551.	1.8	16
128	Circulating cardiomyocyte-derived extracellular vesicles reflect cardiac injury during systemic inflammatory response syndrome in mice. Cellular and Molecular Life Sciences, 2022, 79, 84.	2.4	16
129	Anti-diabetic effect of a preparation of vitamins, minerals and trace elements in diabetic rats: a gender difference. BMC Endocrine Disorders, 2014, 14, 72.	0.9	15
130	The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats. Cardiovascular Diabetology, 2015, 14, 85.	2.7	15
131	Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	15
132	Pharmacology of oxidative stress: translational opportunities. British Journal of Pharmacology, 2017, 174, 1511-1513.	2.7	14
133	Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. Journal of Pharmacological and Toxicological Methods, 2018, 91, 50-58.	0.3	14
134	A Comorbidity Model of Myocardial Ischemia/Reperfusion Injury and Hypercholesterolemia in Rat Cardiac Myocyte Cultures. Frontiers in Physiology, 2019, 10, 1564.	1.3	14
135	Ischaemic postâ€conditioning in rats: Responder and nonâ€responder differ in transcriptome of mitochondrial proteins. Journal of Cellular and Molecular Medicine, 2020, 24, 5528-5541.	1.6	14
136	Integrative characterization of chronic cigarette smoke-induced cardiopulmonary comorbidities in a mouse model. Environmental Pollution, 2017, 229, 746-759.	3.7	13
137	JDP2 overexpression provokes cardiac dysfunction in mice. Scientific Reports, 2018, 8, 7647.	1.6	13
138	Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair. Vascular Pharmacology, 2020, 135, 106807.	1.0	13
139	Decreased circulating dipeptidyl peptidase-4 enzyme activity is prognostic for severe outcomes in COVID-19 inpatients. Biomarkers in Medicine, 2022, 16, 317-330.	0.6	13
140	Does nitric oxide signaling differ in pre- and post-conditioning? Importance of S-nitrosylation vs. protein kinase G activation. Free Radical Biology and Medicine, 2013, 54, 113-115.	1.3	12
141	Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection. Frontiers in Pharmacology, 2018, 9, 296.	1.6	12
142	Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sciences, 2017, 186, 11-16.	2.0	11
143	Cardioprotective Effect of Novel Matrix Metalloproteinase Inhibitors. International Journal of Molecular Sciences, 2020, 21, 6990.	1.8	11
144	Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. British Journal of Pharmacology, 2020, 177, 5336-5356.	2.7	11

#	Article	IF	CITATIONS
145	The Network Medicine Imperative and the Need for an International Network Medicine Consortium. American Journal of Medicine, 2020, 133, e451-e454.	0.6	11
146	PACAP-38 in Acute ST-Segment Elevation Myocardial Infarction in Humans and Pigs: A Translational Study. International Journal of Molecular Sciences, 2021, 22, 2883.	1.8	11
147	Gene and protein expression changes in response to normoxic perfusion in mouse hearts. Journal of Pharmacological and Toxicological Methods, 2008, 57, 145-154.	0.3	10
148	Low-Dose Endotoxin Induces Late Preconditioning, Increases Peroxynitrite Formation, and Activates STAT3 in the Rat Heart. Molecules, 2017, 22, 433.	1.7	10
149	Epigenetic modulation of vascular diseases: Assessing the evidence and exploring the opportunities. Vascular Pharmacology, 2018, 107, 43-52.	1.0	10
150	l-Alpha-glycerylphosphorylcholine can be cytoprotective or cytotoxic in neonatal rat cardiac myocytes: a double-edged sword phenomenon. Molecular and Cellular Biochemistry, 2019, 460, 195-203.	1.4	10
151	Transcriptional Alterations by Ischaemic Postconditioning in a Pig Infarction Model: Impact on Microvascular Protection. International Journal of Molecular Sciences, 2019, 20, 344.	1.8	10
152	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	1.8	10
153	Tissue-specific Gene Expression in Rat Hearts and Aortas in a Model of Vascular Nitrate Tolerance. Journal of Cardiovascular Pharmacology, 2015, 65, 485-493.	0.8	9
154	Decorin Protects Cardiac Myocytes against Simulated Ischemia/Reperfusion Injury. Molecules, 2020, 25, 3426.	1.7	9
155	Cardiac miRNA Expression and their mRNA Targets in a Rat Model of Prediabetes. International Journal of Molecular Sciences, 2020, 21, 2128.	1.8	9
156	Telomerase/myocardin expressing mesenchymal cells induce survival and cardiovascular markers in cardiac stromal cells undergoing ischaemia/reperfusion. Journal of Cellular and Molecular Medicine, 2021, 25, 5381-5390.	1.6	9
157	Risk factors, coâ€morbidities, and coâ€medications in cardioprotection: Importance for translation. British Journal of Pharmacology, 2020, 177, 5249-5251.	2.7	8
158	The Nonsteroidal Anti-Inflammatory Drug Ketorolac Alters the Small Intestinal Microbiota and Bile Acids Without Inducing Intestinal Damage or Delaying Peristalsis in the Rat. Frontiers in Pharmacology, 2021, 12, 664177.	1.6	8
159	Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation. Current Drug Targets, 2015, 16, 780-785.	1.0	8
160	The cardioprotective effect of postconditioning is lost in cholesterol diet-induced hyperlipidemia in rats. Journal of Molecular and Cellular Cardiology, 2006, 40, 976-977.	0.9	7
161	Ischemic postconditioning alters the gene expression pattern of the ischemic heart. Experimental Biology and Medicine, 2014, 239, 141-150.	1.1	7
162	Adverse Effects on βâ€Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Longâ€Term Cardiac Function. Journal of the American Heart Association, 2017, 6, .	1.6	7

#	Article	IF	Citations
163	miR-125b is a protectomiR: A rising star for acute cardioprotection. Journal of Molecular and Cellular Cardiology, 2018, 115, 51-53.	0.9	7
164	The impact of age on cardiac function and extracellular matrix component expression in adverse post-infarction remodeling in mice. Experimental Gerontology, 2019, 119, 193-202.	1.2	7
165	Calcium Ionophore-Induced Extracellular Vesicles Mediate Cytoprotection against Simulated Ischemia/Reperfusion Injury in Cardiomyocyte-Derived Cell Lines by Inducing Heme Oxygenase 1. International Journal of Molecular Sciences, 2020, 21, 7687.	1.8	7
166	Antiischemic Effect of Monophosphoryl Lipid A in Conscious Rabbits with Hypercholesterolemia and Atherosclerosis. Journal of Cardiovascular Pharmacology, 1998, 32, 206-212.	0.8	7
167	Inflammasome activation in endâ€stage heart failureâ€associated atrial fibrillation. ESC Heart Failure, 2022, 9, 2747-2752.	1.4	7
168	Letter by Csont and Ferdinandy Regarding Article, "Biglycan Is Required for Adaptive Remodeling After Myocardial Infarction― Circulation, 2008, 118, e521; author reply e522.	1.6	6
169	Lack of Small Intestinal Dysbiosis Following Long-Term Selective Inhibition of Cyclooxygenase-2 by Rofecoxib in the Rat. Cells, 2019, 8, 251.	1.8	6
170	Chronic treatment with rofecoxib but not ischemic preconditioning of the myocardium ameliorates early intestinal damage following cardiac ischemia/reperfusion injury in rats. Biochemical Pharmacology, 2020, 178, 114099.	2.0	6
171	Protection of neonatal rat cardiac myocytes against radiation-induced damage with agonists of growth hormone-releasing hormone. Pharmacological Research, 2016, 111, 859-866.	3.1	5
172	Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review. Vascular Pharmacology, 2018, 111, 1-6.	1.0	5
173	Swiprosin-1/EFhD-2 Expression in Cardiac Remodeling and Post-Infarct Repair: Effect of Ischemic Conditioning. International Journal of Molecular Sciences, 2020, 21, 3359.	1.8	5
174	Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 10504.	1.8	5
175	Intrinsic remote conditioning of the myocardium as a comprehensive cardiac response to ischemia and reperfusion. Oncotarget, 2017, 8, 67227-67240.	0.8	5
176	Somatostatin and Its Receptors in Myocardial Ischemia/Reperfusion Injury and Cardioprotection. Frontiers in Pharmacology, 2021, 12, 663655.	1.6	5
177	Capsaicin-Sensitive Sensory Nerves in Myocardial Ischemia–Reperfusion Injury and Ischemic Stress Adaptation. NeuroImmune Biology, 2009, 8, 267-288.	0.2	4
178	Letter by Csont and Ferdinandy Regarding Article, "lschemic Conditioning Protects the Uremic Heart in a Rodent Model of Myocardial Infarctionâ€. Circulation, 2012, 126, e212; author reply e213.	1.6	4
179	Post-Myocardial Infarction Heart Failure in Closed-chest Coronary Occlusion/Reperfusion Model in Göttingen Minipigs and Landrace Pigs. Journal of Visualized Experiments, 2021, , .	0.2	4
180	Molecular Network Approach Reveals Rictor as a Central Target of Cardiac ProtectomiRs. International Journal of Molecular Sciences, 2021, 22, 9539.	1.8	4

#	Article	IF	CITATION
181	Saxagliptin Cardiotoxicity in Chronic Heart Failure: The Role of DPP4 in the Regulation of Neuropeptide Tone. Biomedicines, 2022, 10, 1573.	1.4	4
182	On-Line Visualization of Ischemic Burden During Repetitive Ischemia/Reperfusion. JACC: Cardiovascular Imaging, 2014, 7, 956-958.	2.3	3
183	Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Deletion but Not Inhibition of Extracellular PCSK9 Reduces Infarct Sizes Ex Vivo but Not In Vivo. International Journal of Molecular Sciences, 2022, 23, 6512.	1.8	3
184	Delayed Contralateral Nephrectomy Halted Post-Ischemic Renal Fibrosis Progression and Inhibited the Ischemia-Induced Fibromir Upregulation in Mice. Biomedicines, 2021, 9, 815.	1.4	2
185	Subantimicrobial Dose Doxycycline Worsens Chronic Arthritis-Induced Bone Microarchitectural Alterations in a Mouse Model: Role of Matrix Metalloproteinases?. Frontiers in Pharmacology, 2019, 10, 233.	1.6	1
186	Response to letter entitled Plasma MMPs in CAD patients by Ceron CSet al European Journal of Clinical Investigation, 2016, 46, 106-107.	1.7	0
187	Unbiased bioinformatics analysis of microRNA transcriptomics datasets and network theoretic target prediction., 2021,, 441-457.		O