Matthew J Hardman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469808/publications.pdf

Version: 2024-02-01

76 papers 4,689

38 h-index 102304 66 g-index

79 all docs

79 docs citations

79 times ranked 6152 citing authors

#	Article	IF	Citations
1	An Epidermal-Specific Role for Arginase1 during Cutaneous Wound Repair. Journal of Investigative Dermatology, 2022, 142, 1206-1216.e8.	0.3	8
2	Skin Aging in Long-Lived Naked Mole-Rats Is Accompanied by Increased Expression of Longevity-Associated and Tumor Suppressor Genes. Journal of Investigative Dermatology, 2022, 142, 2853-2863.e4.	0.3	5
3	Pre-Clinical Assessment of Single-Use Negative Pressure Wound Therapy During <i>In Vivo</i> Porcine Wound Healing. Advances in Wound Care, 2021, 10, 345-356.	2.6	17
4	Wound senescence: A functional link between diabetes and ageing?. Experimental Dermatology, 2021, 30, 68-73.	1.4	26
5	Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria. Materials Chemistry Frontiers, 2021, 5, 961-972.	3.2	21
6	Superenhanced Removal of Fungal Biofilms by Proteaseâ€Functionalized Amphotericin B Nanocarriers. Advanced NanoBiomed Research, 2021, 1, 2000027.	1.7	9
7	A role for estrogen in skin ageing and dermal biomechanics. Mechanisms of Ageing and Development, 2021, 197, 111513.	2.2	19
8	Cellular benefits of singleâ€use negative pressure wound therapy demonstrated in a novel ex vivo human skin wound model. Wound Repair and Regeneration, 2021, 29, 298-305.	1.5	7
9	Combined Metallomics/Transcriptomics Profiling Reveals a Major Role for Metals in Wound Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 788596.	1.8	2
10	Optimising platelet secretomes to deliver robust tissueâ€specific regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 82-98.	1.3	13
11	Wound healing: cellular mechanisms and pathological outcomes. Open Biology, 2020, 10, 200223.	1.5	546
12	Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Frontiers in Cell and Developmental Biology, 2020, 8, 773.	1.8	82
13	Antibodyâ€free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria. Nano Select, 2020, 1, 673-688.	1.9	3
14	Tissue Iron Promotes Wound Repair via M2 Macrophage Polarization and the Chemokine (C-C Motif) Ligands 17 and 22. American Journal of Pathology, 2019, 189, 2196-2208.	1.9	42
15	Reduced Iron in Diabetic Wounds: An Oxidative Stress-Dependent Role for STEAP3 in Extracellular Matrix Deposition and Remodeling. Journal of Investigative Dermatology, 2019, 139, 2368-2377.e7.	0.3	26
16	Breathing new life into old antibiotics: overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. Nanoscale, 2019, 11, 10472-10485.	2.8	39
17	Elevated Local Senescence in Diabetic WoundÂHealing Is Linked to Pathological RepairÂvia CXCR2. Journal of Investigative Dermatology, 2019, 139, 1171-1181.e6.	0.3	75
18	Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43902-43919.	4.0	49

#	Article	IF	CITATIONS
19	Evaluating STZ-Induced Impaired Wound Healing in Rats. Journal of Investigative Dermatology, 2018, 138, 994-997.	0.3	13
20	Silver oxysalts promote cutaneous wound healing independent of infection. Wound Repair and Regeneration, 2018, 26, 144-152.	1.5	21
21	Amplified antimicrobial action of chlorhexidine encapsulated in PDAC-functionalized acrylate copolymer nanogel carriers. Materials Chemistry Frontiers, 2018, 2, 2032-2044.	3.2	25
22	Microbial Host Interactions and Impaired Wound Healing in Mice and Humans: Defining a Role for BD14 and NOD2. Journal of Investigative Dermatology, 2018, 138, 2264-2274.	0.3	36
23	A Novel Silver Bioactive Glass Elicits Antimicrobial Efficacy Against Pseudomonas aeruginosa and Staphylococcus aureus in an ex Vivo Skin Wound Biofilm Model. Frontiers in Microbiology, 2018, 9, 1450.	1.5	40
24	Cutaneous Nod2 Expression Regulates theÂSkin Microbiome and Wound Healing inÂa Murine Model. Journal of Investigative Dermatology, 2017, 137, 2427-2436.	0.3	29
25	The role of estrogen in cutaneous ageing and repair. Maturitas, 2017, 103, 60-64.	1.0	100
26	An ex vivo porcine skin model to evaluate pressureâ€reducing devices of different mechanical properties used for pressure ulcer prevention. Wound Repair and Regeneration, 2016, 24, 1089-1096.	1.5	10
27	Do not be alarmed: understanding <scp>IL</scp> 33â€ <scp>ST</scp> 2 signalling in wound repair. Experimental Dermatology, 2016, 25, 22-23.	1.4	3
28	Response to Comment on Crews et al. Role and Determinants of Adherence to Off-loading in Diabetic Foot Ulcer Healing: A Prospective Investigation. Diabetes Care 2016;39:1371–1377. Diabetes Care, 2016, 39, e222-e223.	4.3	19
29	Comparing the Effectiveness of Polymer Debriding Devices Using a Porcine Wound Biofilm Model. Advances in Wound Care, 2016, 5, 475-485.	2.6	20
30	Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization. Stem Cells, 2016, 34, 1377-1385.	1.4	41
31	Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Laboratory Investigation, 2016, 96, 439-449.	1.7	40
32	Ectodysplasin A Pathway Contributes to Human and Murine Skin Repair. Journal of Investigative Dermatology, 2016, 136, 1022-1030.	0.3	14
33	Global Gene Expression Analysis in PKCα â^'/â^' Mouse Skin Reveals Structural Changes in the Dermis and Defective Wound Granulation Tissue. Journal of Investigative Dermatology, 2015, 135, 3173-3182.	0.3	5
34	Sex and Sex Hormones Mediate Wound Healing. , 2015, , 31-48.		4
35	The Role of Estrogen Deficiency in Skin Aging and Wound Healing. , 2015, , 71-88.		2
36	Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-123 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization. British Journal of Dermatology, 2014, 171, 55-62.	1.4	33

#	Article	IF	Citations
37	A statistical analysis of murine incisional and excisional acute wound models. Wound Repair and Regeneration, 2014, 22, 281-287.	1.5	73
38	Estrogen Receptor-Alpha Promotes Alternative Macrophage Activation during Cutaneous Repair. Journal of Investigative Dermatology, 2014, 134, 2447-2457.	0.3	105
39	Nod2 deficiency impairs inflammatory and epithelial aspects of the cutaneous woundâ€healing response. Journal of Pathology, 2013, 229, 121-131.	2.1	22
40	Estrogen receptor-mediated signalling in female mice is locally activated in response to wounding. Molecular and Cellular Endocrinology, 2013, 375, 149-156.	1.6	21
41	Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. DMM Disease Models and Mechanisms, 2013, 6, 1434-47.	1.2	100
42	Local Arginase 1 Activity Is Required for Cutaneous Wound Healing. Journal of Investigative Dermatology, 2013, 133, 2461-2470.	0.3	157
43	Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin. PLoS ONE, 2013, 8, e73596.	1.1	46
44	Insulin-Like Growth Factor-1 Promotes Wound Healing in Estrogen-Deprived Mice: New Insights into Cutaneous IGF-1R/ERα Cross Talk. Journal of Investigative Dermatology, 2012, 132, 2838-2848.	0.3	71
45	Direct evidence that PKCα positively regulates wound reâ€epithelialization: correlation with changes in desmosomal adhesiveness. Journal of Pathology, 2012, 227, 346-356.	2.1	66
46	The role of estrogen deficiency in skin ageing and wound healing. Biogerontology, 2012, 13, 3-20.	2.0	95
47	Tumor necrosis factorâ€elpha (<scp>TNFâ€î±</scp>) is a therapeutic target for impaired cutaneous wound healing. Wound Repair and Regeneration, 2012, 20, 38-49.	1.5	209
48	Animal models of wound repair: Are they cutting it?. Experimental Dermatology, 2012, 21, 581-585.	1.4	110
49	Exploring the "Hair Growth–Wound Healing Connectionâ€! Anagen Phase Promotes Wound Re-Epithelialization. Journal of Investigative Dermatology, 2011, 131, 518-528.	0.3	137
50	MIF: a key player in cutaneous biology and wound healing. Experimental Dermatology, 2011, 20, 1-6.	1.4	73
51	Coping and depression in diabetic foot ulcer healing: causal influence, mechanistic evidence or none of the above?. Diabetologia, 2011, 54, 205-206.	2.9	6
52	The role of sex hormones in the development of Th2 immunity in a genderâ€biased model of <i>Trichuris muris</i> infection. European Journal of Immunology, 2010, 40, 406-416.	1.6	78
53	Clinically relevant doses of lidocaine and bupivacaine do not impair cutaneous wound healing in mice. British Journal of Anaesthesia, 2010, 104, 768-773.	1.5	63
54	Estrogen promotes cutaneous wound healing via estrogen receptor \hat{l}^2 independent of its antiinflammatory activities. Journal of Experimental Medicine, 2010, 207, 1825-1833.	4.2	146

#	Article	IF	CITATIONS
55	The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Molecular and Cellular Endocrinology, 2010, 321, 184-193.	1.6	66
56	$17\hat{l}^2$ -Estradiol Inhibits Wound Healing in Male Mice via Estrogen Receptor- \hat{l}_\pm . American Journal of Pathology, 2010, 176, 2707-2721.	1.9	31
57	Delayed wound healing in elderly people. Reviews in Clinical Gerontology, 2009, 19, 171-184.	0.5	8
58	Novel Locally Active Estrogens Accelerate Cutaneous Wound Healing. A Preliminary Study. Molecular Pharmaceutics, 2009, 6, 543-556.	2.3	19
59	Unique and Synergistic Roles for $17\hat{l}^2$ -Estradiol and Macrophage Migration Inhibitory Factor during Cutaneous Wound Closure Are Cell Type Specific. Endocrinology, 2009, 150, 2749-2757.	1.4	48
60	Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biology, 2008, 9, R80.	13.9	107
61	Selective Estrogen Receptor Modulators Accelerate Cutaneous Wound Healing in Ovariectomized Female Mice. Endocrinology, 2008, 149, 551-557.	1.4	102
62	Sex Dimorphism in Wound Healing: The Roles of Sex Steroids and Macrophage Migration Inhibitory Factor. Endocrinology, 2008, 149, 5747-5757.	1.4	84
63	MIF: Wound Repair. , 2007, , 195-215.		1
64	New and Alternative Treatments for Diabetic Foot Ulcers: Hormones and Growth Factors. , 2006, , 214-221.		1
65	Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nature Genetics, 2006, 38, 1329-1334.	9.4	283
66	Androgens modulate the inflammatory response during acute wound healing. Journal of Cell Science, 2006, 119, 722-732.	1.2	119
67	Late Cornified Envelope Family in Differentiating Epithelia—Response to Calcium and Ultraviolet Irradiation. Journal of Investigative Dermatology, 2005, 124, 1062-1070.	0.3	135
68	The Sex Steroid Precursor DHEA Accelerates Cutaneous Wound Healing Via the Estrogen Receptors. Journal of Investigative Dermatology, 2005, 125, 1053-1062.	0.3	65
69	Desmosomal Cadherin Misexpression Alters β-Catenin Stability and Epidermal Differentiation. Molecular and Cellular Biology, 2005, 25, 969-978.	1.1	65
70	Macrophage Migration Inhibitory Factor. American Journal of Pathology, 2005, 167, 1561-1574.	1.9	89
71	Covering the limb - formation of the integument. Journal of Anatomy, 2003, 202, 113-123.	0.9	79
72	Suprabasal Desmoglein 3 Expression in the Epidermis of Transgenic Mice Results in Hyperproliferation and Abnormal Differentiation. Molecular and Cellular Biology, 2002, 22, 5846-5858.	1.1	104

#	Article	IF	CITATIONS
73	Integumentary Structures. , 2002, , 567-589.		1
74	Differentially expressed late constituents of the epidermal cornified envelope. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13031-13036.	3.3	151
75	SPRR1 Gene Induction and Barrier Formation Occur as Coordinated Moving Fronts in Terminally Differentiating Epithelia. Journal of Investigative Dermatology, 2000, 114, 967-975.	0.3	20
76	Barrier Formation in the Human Fetus is Patterned. Journal of Investigative Dermatology, 1999, 113, 1106-1113.	0.3	85