Daniel G Tenen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469751/publications.pdf Version: 2024-02-01

160 papers	17,212 citations	47006 47 h-index	14759 127 g-index
172 all docs	172 docs citations	172 times ranked	23875 citing authors

#	Article	IF	CITATIONS
1	<i>EGFR</i> Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 2005, 352, 786-792.	27.0	3,715
2	Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discovery, 2020, 10, 783-791.	9.4	1,286
3	Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity, 2019, 50, 1317-1334.e10.	14.3	897
4	Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nature Genetics, 2001, 27, 263-270.	21.4	836
5	Transcription Factors, Normal Myeloid Development, and Leukemia. Blood, 1997, 90, 489-519.	1.4	684
6	Disruption of differentiation in human cancer: AML shows the way. Nature Reviews Cancer, 2003, 3, 89-101.	28.4	540
7	Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nature Genetics, 2004, 36, 624-630.	21.4	470
8	Enhancement of Hematopoietic Stem Cell Repopulating Capacity and Self-Renewal in the Absence of the Transcription Factor C/EBPα. Immunity, 2004, 21, 853-863.	14.3	459
9	DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 2013, 503, 371-376.	27.8	446
10	CCAAT/Enhancer Binding Protein α Is a Regulatory Switch Sufficient for Induction of Granulocytic Development from Bipotential Myeloid Progenitors. Molecular and Cellular Biology, 1998, 18, 4301-4314.	2.3	443
11	AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nature Medicine, 2001, 7, 444-451.	30.7	433
12	Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nature Medicine, 2013, 19, 209-216.	30.7	421
13	Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nature Immunology, 2006, 7, 1037-1047.	14.5	370
14	Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18105-18110.	7.1	293
15	Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood, 2010, 115, 1768-1778.	1.4	265
16	The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes and Development, 2006, 20, 3010-3021.	5.9	251
17	c-Myc Is a Critical Target for C/EBPα in Granulopoiesis. Molecular and Cellular Biology, 2001, 21, 3789-3806.	2.3	233
18	Modeling of C/EBPα Mutant Acute Myeloid Leukemia Reveals a Common Expression Signature of Committed Myeloid Leukemia-Initiating Cells. Cancer Cell, 2008, 13, 299-310.	16.8	225

#	Article	IF	CITATIONS
19	Oncofetal Gene <i>SALL4</i> in Aggressive Hepatocellular Carcinoma. New England Journal of Medicine, 2013, 368, 2266-2276.	27.0	223
20	PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nature Genetics, 2008, 40, 51-60.	21.4	218
21	Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood, 2005, 105, 324-334.	1.4	192
22	Dysregulation of the C/EBPα Differentiation Pathway in Human Cancer. Journal of Clinical Oncology, 2009, 27, 619-628.	1.6	176
23	Block of C/EBPα function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. Journal of Experimental Medicine, 2006, 203, 371-381.	8.5	175
24	<i>PU.1</i> expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared <i>cis</i> -regulatory element. Genes and Development, 2008, 22, 2085-2092.	5.9	169
25	Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Reports, 2019, 28, 302-311.e5.	6.4	167
26	Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells. Molecular Cell, 2013, 49, 934-946.	9.7	127
27	ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. Gastroenterology, 2016, 151, 637-650.e10.	1.3	127
28	C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nature Cell Biology, 2013, 15, 385-394.	10.3	121
29	C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood, 2010, 116, 5638-5649.	1.4	119
30	Sox4 Is a Key Oncogenic Target in C/EBPα Mutant Acute Myeloid Leukemia. Cancer Cell, 2013, 24, 575-588.	16.8	112
31	Treatment of Chronic Myelogenous Leukemia by Blocking Cytokine Alterations Found in Normal Stem and Progenitor Cells. Cancer Cell, 2015, 27, 671-681.	16.8	112
32	Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated nonâ€small cell lung cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	109
33	Down-regulation and antiproliferative role of C/EBPalpha in lung cancer. Cancer Research, 2002, 62, 528-34.	0.9	104
34	SALL4, the missing link between stem cells, development and cancer. Gene, 2016, 584, 111-119.	2.2	101
35	Regulation of the PU.1 gene by distal elements. Blood, 2001, 98, 2958-2965.	1.4	98
36	CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood, 2003, 101, 1141-1148.	1.4	98

#	Article	IF	CITATIONS
37	Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell, 2015, 17, 611-623.	11.1	97
38	The amino terminal and E2F interaction domains are critical for C/EBPα-mediated induction of granulopoietic development of hematopoietic cells. Blood, 2003, 102, 3163-3171.	1.4	93
39	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	1.4	92
40	Dynamic Analysis of Gene Expression and Genome-wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors. Cell Stem Cell, 2013, 13, 754-768.	11.1	86
41	NanoVar: accurate characterization of patients' genomic structural variants using low-depth nanopore sequencing. Genome Biology, 2020, 21, 56.	8.8	73
42	Dissecting the role of aberrant DNA methylation in human leukaemia. Nature Communications, 2015, 6, 7091.	12.8	62
43	Respiratory Failure Due to Differentiation Arrest and Expansion of Alveolar Cells following Lung-Specific Loss of the Transcription Factor C/EBPα in Mice. Molecular and Cellular Biology, 2006, 26, 1109-1123.	2.3	61
44	EGFR signaling pathway as therapeutic target in human cancers. Seminars in Cancer Biology, 2022, 85, 253-275.	9.6	61
45	Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood, 2013, 121, 1413-1421.	1.4	59
46	Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells. Blood, 2015, 126, 1086-1094.	1.4	58
47	Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. Journal of Experimental Medicine, 2019, 216, 1599-1614.	8.5	53
48	CDDO induces granulocytic differentiation of myeloid leukemic blasts through translational up-regulation of p42 CCAAT enhancer–binding protein alpha. Blood, 2007, 110, 3695-3705.	1.4	50
49	An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Research, 2017, 45, 10436-10451.	14.5	50
50	C/EBPÎ ³ deregulation results in differentiation arrest in acute myeloid leukemia. Journal of Clinical Investigation, 2012, 122, 4490-4504.	8.2	50
51	CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell, 2018, 33, 1111-1127.e5.	16.8	48
52	SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion, 2013, 53, 1037-1049.	1.6	46
53	C/EBPα and DEK coordinately regulate myeloid differentiation. Blood, 2012, 119, 4878-4888.	1.4	45
54	Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression. Science Translational Medicine, 2016, 8, 350ra104.	12.4	45

#	Article	IF	CITATIONS
55	ZNF143 mediates CTCF-bound promoter–enhancer loops required for murine hematopoietic stem and progenitor cell function. Nature Communications, 2021, 12, 43.	12.8	45
56	Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7119-E7128.	7.1	43
57	New High-Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels of SALL4 by Inhibiting Oxidative Phosphorylation. Gastroenterology, 2019, 157, 1615-1629.e17.	1.3	42
58	A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis. Journal of Clinical Investigation, 2013, 123, 4195-4207.	8.2	40
59	PML/RARα-Regulated miR-181a/b Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia. Cancer Research, 2015, 75, 3411-3424.	0.9	39
60	Acetylation of C/EBPα inhibits its granulopoietic function. Nature Communications, 2016, 7, 10968.	12.8	38
61	Disruption of the C/EBPα—miR-182 balance impairs granulocytic differentiation. Nature Communications, 2017, 8, 46.	12.8	38
62	Runx1 exon 6–related alternative splicing isoforms differentially regulate hematopoiesis in mice. Blood, 2014, 123, 3760-3769.	1.4	37
63	Identification of Sp1-binding sites in the CD11c (p150,95α) and CD11a (LFA-1α) integrin subunit promoters and their involvement in the tissuespecific expression of CD11c. European Journal of Immunology, 1995, 25, 3496-3503.	2.9	36
64	Zinc Finger Protein SALL4 Functions through an AT-Rich Motif to Regulate Gene Expression. Cell Reports, 2021, 34, 108574.	6.4	36
65	A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. Journal of Experimental Medicine, 2015, 212, 1551-1569.	8.5	35
66	β-Catenin–TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood, 2020, 136, 2574-2587.	1.4	35
67	Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Science Translational Medicine, 2021, 13, .	12.4	34
68	Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood, 2013, 122, 2433-2442.	1.4	33
69	Histone acetylation mediated by Brd1 is crucial for Cd8 gene activation during early thymocyte development. Nature Communications, 2014, 5, 5872.	12.8	33
70	Lysine acetyltransferase Tip60 is required for hematopoietic stem cell maintenance. Blood, 2020, 136, 1735-1747.	1.4	33
71	The Runx-PU.1 pathway preserves normal and AML/ETO9a leukemic stem cells. Blood, 2014, 124, 2391-2399.	1.4	32
72	CAV1 - GLUT3 signaling is important for cellular energy and can be targeted by Atorvastatin in Non-Small Cell Lung Cancer. Theranostics, 2019, 9, 6157-6174.	10.0	32

#	Article	IF	CITATIONS
73	Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. Redox Biology, 2019, 24, 101168.	9.0	31
74	Chronic interleukin-1 exposure triggers selection for <i>Cebpa</i> -knockout multipotent hematopoietic progenitors. Journal of Experimental Medicine, 2021, 218, .	8.5	31
75	Targeting SALL4 by entinostat in lung cancer. Oncotarget, 2016, 7, 75425-75440.	1.8	29
76	Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases. Cell Reports, 2020, 32, 108181.	6.4	27
77	RUNX1 regulates theCD34gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO Journal, 2011, 30, 4059-4070.	7.8	26
78	E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Science Immunology, 2021, 6, .	11.9	25
79	Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 2000, 96, 2108-2115.	1.4	25
80	Demethylation and Up-Regulation of an Oncogene after Hypomethylating Therapy. New England Journal of Medicine, 2022, 386, 1998-2010.	27.0	25
81	Lessons learned from early compassionate use of convalescent plasma on critically ill patients with <scp>Covidâ€19</scp> . Transfusion, 2020, 60, 2210-2216.	1.6	22
82	ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. Journal of Biological Chemistry, 2017, 292, 18924-18936.	3.4	20
83	The basic helix-loop-helix transcription factor SHARP1 is an oncogenic driver in MLL-AF6 acute myelogenous leukemia. Nature Communications, 2018, 9, 1622.	12.8	20
84	Myeloid lncRNA <i>LOUP</i> mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML. Blood, 2021, 138, 1331-1344.	1.4	19
85	Metabolic alterations mediated by STAT3 promotes drug persistence in CML. Leukemia, 2021, 35, 3371-3382.	7.2	19
86	Down regulation of PSA by C/EBPÎ \pm is associated with loss of AR expression and inhibition of PSA promoter activity in the LNCaP cell Line. BMC Cancer, 2006, 6, 158.	2.6	18
87	Nanodiamondâ€Based Platform for Intracellularâ€Specific Delivery of Therapeutic Peptides against Hepatocellular Carcinoma. Advanced Therapeutics, 2018, 1, 1800110.	3.2	17
88	A Cell-Based High-Throughput Screening for Inducers of Myeloid Differentiation. Journal of Biomolecular Screening, 2015, 20, 1150-1159.	2.6	14
89	DNMT3B shapes the mCA landscape and regulates mCG for promoter bivalency in human embryonic stem cells. Nucleic Acids Research, 2019, 47, 7460-7475.	14.5	14
90	The gene signature in CCAAT-enhancer-binding protein dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors. Haematologica, 2014, 99, 697-705.	3.5	13

#	Article	IF	CITATIONS
91	Targeting an Inducible SALL4-Mediated Cancer Vulnerability with Sequential Therapy. Cancer Research, 2021, 81, 6018-6028.	0.9	13
92	Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Communications Biology, 2021, 4, 370.	4.4	12
93	Repurposing RNA sequencing for discovery of RNA modifications in clinical cohorts. Science Advances, 2021, 7, .	10.3	12
94	Pseudogene-mediated DNA demethylation leads to oncogene activation. Science Advances, 2021, 7, eabg1695.	10.3	12
95	Emerging therapies for inv(16) AML. Blood, 2021, 137, 2579-2584.	1.4	11
96	Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene, 2021, 774, 145421.	2.2	9
97	ATRA Resolves the Differentiation Block in t(15;17) Myeloid Leukemia by Restoring PU.1 Expression Blood, 2004, 104, 389-389.	1.4	9
98	3′ Distal Regulatory Elements Required for Human CD34 Expression in Transgenic Mice Blood, 2005, 106, 125-125.	1.4	9
99	ZFP143 Activates C/EBPα Transcription in Myeloid Cells Blood, 2007, 110, 1233-1233.	1.4	9
100	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nature Communications, 2022, 13, 2614.	12.8	9
101	Sox4 Is Required for the Formation and Maintenance of Multipotent Progenitors. Blood, 2014, 124, 1577-1577.	1.4	8
102	SALL4 and microRNA: The Role of Let-7. Genes, 2021, 12, 1301.	2.4	7
103	Significant Role of Peptidyl-Prolyl cis/trans Isomerase, Pin1 in Acute Myeloid Leukemia with C/EBPα Mutations Blood, 2007, 110, 55-55.	1.4	7
104	C/EBPÎ ³ is dispensable for steady-state and emergency granulopoiesis. Haematologica, 2018, 103, e331-e335.	3.5	6
105	Styryl Quinazolinones as Potential Inducers of Myeloid Differentiation via Upregulation of C/EBPα. Molecules, 2018, 23, 1938.	3.8	6
106	Improved hematopoietic stem cell transplantation upon inhibition of natural killer cell-derived interferon-gamma. Stem Cell Reports, 2021, 16, 1999-2013.	4.8	6
107	The second hit of DNA methylation. Molecular and Cellular Oncology, 2016, 3, e1093690.	0.7	5
108	Maintenance and enhancement of human peripheral blood mobilized stem/progenitor cell engraftment after ex vivo culture via an HDACi/SALL4 axis (3465). Experimental Hematology, 2019, 75, 53-63.e11.	0.4	5

#	Article	IF	CITATIONS
109	Targeting microtubule sensitizes drug resistant lung cancer cells to lysosomal pathway inhibitors. Theranostics, 2020, 10, 2727-2743.	10.0	5
110	The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining. Journal of Immunology, 2016, 196, 244-255.	0.8	4
111	Diverse functions of long noncoding RNAs in acute myeloid leukemia. Current Opinion in Hematology, 2021, Publish Ahead of Print, 34-43.	2.5	4
112	The Ordered Expression of Transcription Factors Directs Hierarchical Lineage Specification of Eosinophils, Basophils and Mast Cells Blood, 2004, 104, 224-224.	1.4	4
113	CEBPα Is a Transcriptional Repressor of T-Cell Related Genes Explaining the Myeloid/T-Lymphoid Features of CEBPα-Silenced AML. Blood, 2011, 118, 554-554.	1.4	4
114	SALL4 Is a Key Factor in HDAC Inhibitor Mediated Ex Vivo Expansion of Human Peripheral Blood Mobilized Stem/Progenitor CD34+CD90+ Cells. Blood, 2014, 124, 1566-1566.	1.4	3
115	High-speed automatic characterization of rare events in flow cytometric data. PLoS ONE, 2020, 15, e0228651.	2.5	3
116	Aberrant Splicing In Patients With AML Is Associated With Over- Expression Of Specific Splicing Factors. Blood, 2013, 122, 3749-3749.	1.4	3
117	Styryl quinazolinones and its ethynyl derivatives induce myeloid differentiation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2286-2289.	2.2	2
118	Deletion of a Key PU.1 Gene Regulatory Element Induces T-Cell Lymphoma Blood, 2004, 104, 344-344.	1.4	2
119	Sensitivity to EGFR inhibitors based on location of EGFR exon 20 insertion mutations within the tyrosine kinase domain of EGFR Journal of Clinical Oncology, 2012, 30, 7523-7523.	1.6	2
120	Pegylated G-CSF Mobilizes CD34+ Cells with Different Stem and Progenitor Cell Subsets and Distinct Functional Properties in Comparison with Unconjugated G-CSF Blood, 2006, 108, 3382-3382.	1.4	2
121	The G-CSF Induced MiR-143 Targets MAPK-Family Proteins and Is a Prognostic Factor for RIC-Transplanted AML Patients. Blood, 2014, 124, 2200-2200.	1.4	2
122	Non-coding RNA LEVER sequestration of PRC2 can mediate long range gene regulation. Communications Biology, 2022, 5, 343.	4.4	2
123	C/EBPα Binds and Activates the Distal PU.1 Enhancer Blood, 2006, 108, 1176-1176.	1.4	1
124	Lig4 Is Essential for Maintaining HSC Homeostasis. Blood, 2014, 124, 606-606.	1.4	1
125	BCR/ABL-Mediated Myeloid Expansion Is Promoted by C/EBPβ, a Regulator of Emergency Granulopoiesis,. Blood, 2011, 118, 3747-3747.	1.4	1
126	Stress Hematopoiesis Reveals Abnormal Control of Self-Renewal, Lineage-Bias and Myeloid Differentiation in Mll Partial Tandem Duplication (Mll-PTD) Hematopoietic Stem/Progenitor Cells. Blood, 2012, 120, 3501-3501.	1.4	1

#	Article	IF	CITATIONS
127	Metastasis Suppressor 1 Is Downregulated in CML Stem Cells and Overexpression Impairs Early Leukemic Cell Propagation Blood, 2012, 120, 2776-2776.	1.4	1
128	New Role of the Regulatory Gene SOX2 in Hematopoiesis Blood, 2004, 104, 4195-4195.	1.4	0
129	Molecular Characterization of a PU.1 Transcription Complex Formed on the IL-1Î ² Proximal Promoter Blood, 2004, 104, 3547-3547.	1.4	0
130	Complete Absence of the Lineage-Determining Transcription Factor C/EBPα Results in Loss of Myeloid Identity in Bcr/abl Induced Malignancy Blood, 2005, 106, 646-646.	1.4	0
131	Reduced Binding of C/EBPα to Myeloid Specific Promoters with Altered Gene Expression in the Presence of PML/RARα Blood, 2005, 106, 2999-2999.	1.4	0
132	Identification of Bipotent Basophil/Mast Cell Progenitors in Adult Murine Hematopoiesis Blood, 2005, 106, 633-633.	1.4	0
133	In Vivo Analysis of the Role of C/EBPα in Acute Promyelocytic Leukemia Genesis Blood, 2006, 108, 1937-1937.	1.4	0
134	Growth Factor Independent 1b (Gfi1b) Is Highly Expressed in Human CML and Accelerates p210BCR-ABL Induced Leukemia in Mice Blood, 2007, 110, 1023-1023.	1.4	0
135	A Distal Single Nucleotide Polymorphism Disrupts Development-Dependent Long-Range Transcriptional Regulation of the PU.1 Gene through the Chromatin-Remodeling Protein SATB1 in Acute Myeloid Leukemia Blood, 2007, 110, 3175-3175.	1.4	0
136	Epigenetic Control of C/EBPa by Noncoding RNAs Blood, 2009, 114, 3644-3644.	1.4	0
137	Epigenetic Control of C/EBPa by Distant Synergic Regulatory Elements Blood, 2009, 114, 1470-1470.	1.4	0
138	Selective Disruption of PU.1 in Mature Dendritic Cells Affects Their Tissue Distribution and T Cell Homeostasis. Blood, 2011, 118, 518-518.	1.4	0
139	Essential Role for PU.1 in MEIS1 Activation and MLL Fusion Leukemia,. Blood, 2011, 118, 3466-3466.	1.4	0
140	FLT3-ITD Signaling Induces Oncogenic Mir-155 by NF-κB and STAT5 Pathways In Acute Myeloid Leukemia Thereby Targeting Transcription Factor PU.1,. Blood, 2011, 118, 3469-3469.	1.4	0
141	PU.1 Is a Downstream Target of C/EBPα in Normal Hematopoiesis and Acute Myeloid Leukemia. Blood, 2011, 118, 1353-1353.	1.4	0
142	C/EBPα-Induced Microrna-30c Directly Targets Notch1 During Granulopoiesis and Is Repressed in Acute Myeloid Leukemia. Blood, 2012, 120, 3514-3514.	1.4	0
143	The Essential Role of DNA Repair in Hematopoietic Stem Cell Homeostasis and Disease Blood, 2012, 120, 2328-2328.	1.4	0
144	Microrna-143 Blocks ERK5 Signaling During Granulocytic Differentiation of Hematopoietic Stem Cells and Is Downregulated in AML. Blood, 2012, 120, 3516-3516.	1.4	0

#	Article	IF	CITATIONS
145	STAT5 and NF-κB Induced Oncogenic Mir-155 Directly Targets PU.1 in FLT3-ITD Associated AML. Blood, 2012, 120, 3515-3515.	1.4	0
146	A Novel Approach in Expanding CD34+CD90+ and CD34+CD38-CD90+ Cells Associated with Enhanced in Vivo Repopulating potential Blood, 2012, 120, 2337-2337.	1.4	0
147	Sociology of Normal Stem and Progenitor Cells in CML Niche. Blood, 2012, 120, 1234-1234.	1.4	0
148	PU.1 Is Essential For MLL Leukemia Via Activation Of The Meis/HOX Pathway and A Monocytic Cytokine Mediated Anti-Apoptotic Inflammatory Program. Blood, 2013, 122, 1276-1276.	1.4	0
149	Dysregulation Of Bcl2 Family Proteins Induced By JAK2V617F Mutation Contributes To The Abnormal Expansion Of Neoplastic Initiating Cells. Blood, 2013, 122, 2852-2852.	1.4	0
150	Relationship Between Self-Renewal and Differentiation Pathways in Stem Cells and Leukemia. Blood, 2014, 124, 4789-4789.	1.4	0
151	Identification of a Dynamic Core Transcriptional Network in t(8;21) AML Regulating Differentiation Block and Self-Renewal. Blood, 2014, 124, 1061-1061.	1.4	0
152	RUNX1/CBFÎ ² Dosage Is Critical for MLL Leukemias Development. Blood, 2014, 124, 2187-2187.	1.4	0
153	The PML/RARα-Regulated MiR-181a/b-Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia. Blood, 2014, 124, 2195-2195.	1.4	0
154	PML-RARα Repressed Microrna 126 Mediates Differentiation in Acute Promyelocytic Leukemia By Targeting the Protooncogene C-Myb. Blood, 2014, 124, 3558-3558.	1.4	0
155	C/EBPα and MiR-182 Generate a Negative Feedback Loop Which Is Dysregulated in Acute Myeloid Leukemia. Blood, 2014, 124, 776-776.	1.4	0
156	Cellular Reprogramming Erases Aberrant DNA Methylation and the Malignant Phenotype in Chronic Myeloid Leukemia. Blood, 2014, 124, 4524-4524.	1.4	0
157	Conditional Knockout of Sfpi1 in Post GC B and Plasma Cells Induces B Cell Lymphoma and Plasma Cell Neoplasm. Blood, 2014, 124, 29-29.	1.4	0
158	Core Binding Factor Leukemias Utilize a Physiologic Sense/Antisense Promoter Switch Employed By T-Cells. Blood, 2020, 136, 40-41.	1.4	0
159	Oncofetal Protein SALL4 Is Highly Expressed in Myelodysplastic Syndrome Alongside with NAT10 and P53. Blood, 2020, 136, 34-34.	1.4	0
160	Response to NK cell content does not seem to influence engraftment in exÂvivo TÂcell depleted haploidentical stem cell transplantation. Stem Cell Reports, 2022, 17, 446-447.	4.8	0