
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics, 2004, 39, 1227-1235.	1.4	261
2	Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica, 2009, 44, 369-375.	1.2	237
3	Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mechanics Research Communications, 2004, 31, 121-128.	1.0	209
4	Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica, 2006, 41, 509-518.	1.2	205
5	Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. International Journal of Engineering Science, 2004, 42, 1241-1253.	2.7	193
6	Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat and Mass Transfer, 2008, 44, 921-927.	1.2	188
7	Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. Nonlinear Analysis: Real World Applications, 2009, 10, 2909-2913.	0.9	174
8	MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 3377-3383.	1.2	174
9	Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Conversion and Management, 2008, 49, 3265-3269.	4.4	158
10	Boundary layer flow and heat transfer over a stretching sheet with Newtonian heating. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 651-655.	2.7	158
11	Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Applied Mathematical Modelling, 2008, 32, 2059-2066.	2.2	141
12	Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics, 2020, 64, 251-263.	2.0	138
13	Heat transfer over a stretching surface with variable heat flux in micropolar fluids. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 559-561.	0.9	127
14	Boundary Layer Flow over a Continuously Moving Thin Needle in a Parallel Free Stream. Chinese Physics Letters, 2007, 24, 2895-2897.	1.3	117
15	Mixed Convection on the Stagnation Point Flow Toward a Vertical, Continuously Stretching Sheet. Journal of Heat Transfer, 2007, 129, 1087-1090.	1.2	116
16	Falkner-Skan equation for flow past a moving wedge with suction or injection. Journal of Applied Mathematics and Computing, 2007, 25, 67-83.	1.2	115
17	Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B: Condensed Matter, 2010, 405, 4914-4918.	1.3	110
18	MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics, B/Fluids, 2020, 84, 71-80.	1.2	106

#	Article	IF	CITATIONS
19	MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics (English Edition), 2011, 32, 409-418.	1.9	103
20	MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 2020, 66, 630-644.	2.0	101
21	MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 858-879.	1.6	83
22	Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Computers and Mathematics With Applications, 2008, 56, 3188-3194.	1.4	82
23	Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. International Journal of Mechanical Sciences, 2015, 100, 312-321.	3.6	82
24	Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica, 2008, 43, 411-418.	1.2	79
25	MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 40-46.	1.2	79
26	MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat and Mass Transfer, 2011, 47, 155-162.	1.2	78
27	Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. International Journal of Heat and Mass Transfer, 2013, 62, 647-660.	2.5	78
28	Melting heat transfer in steady laminar flow over a moving surface. Heat and Mass Transfer, 2010, 46, 463-468.	1.2	77
29	Falkner–Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. International Communications in Heat and Mass Transfer, 2011, 38, 149-153.	2.9	77
30	Three-Dimensional Hybrid Nanofluid Flow and Heat Transfer past a Permeable Stretching/Shrinking Sheet with Velocity Slip and Convective Condition. Chinese Journal of Physics, 2020, 66, 157-171.	2.0	77
31	Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity. AEJ - Alexandria Engineering Journal, 2021, 60, 915-926.	3.4	77
32	Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate. International Journal of Thermal Sciences, 2008, 47, 417-422.	2.6	72
33	Moving wedge and flat plate in a micropolar fluid. International Journal of Engineering Science, 2006, 44, 1225-1236.	2.7	70
34	Heat generation/absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet. Chinese Journal of Physics, 2021, 69, 118-133.	2.0	69
35	MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 109-118.	1.7	67
36	Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 2004, 47, 2681-2688.	2.5	66

#	Article	IF	CITATIONS
37	Mixed Convection Boundary Layer Flow from a Horizontal Circular Cylinder Embedded in a Porous Medium Filled with a Nanofluid. Transport in Porous Media, 2011, 86, 517-536.	1.2	66
38	Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux. Heat and Mass Transfer, 2009, 45, 563-567.	1.2	63
39	Mixed convection boundaryâ€layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature. International Journal of Numerical Methods for Heat and Fluid Flow, 2003, 13, 86-109.	1.6	62
40	FREE CONVECTION BOUNDARY LAYER ON AN ISOTHERMAL SPHERE IN A MICROPOLAR FLUID. International Communications in Heat and Mass Transfer, 2002, 29, 377-386.	2.9	61
41	Homotopy analysis method for solving fractional Lorenz system. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1864-1872.	1.7	61
42	The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. Chemical Engineering Journal, 2009, 148, 63-67.	6.6	56
43	Flow and heat transfer of magnetohydrodynamic three-dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with convective boundary conditions. International Journal of Mechanical Sciences, 2017, 124-125, 166-173.	3.6	55
44	Rotating flow over an exponentially shrinking sheet with suction. Journal of Molecular Liquids, 2015, 211, 965-969.	2.3	52
45	Mixed convection boundary layer flow along vertical thin needles: Assisting and opposing flows. International Communications in Heat and Mass Transfer, 2008, 35, 157-162.	2.9	51
46	Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1196-1207.	1.7	51
47	FORCED CONVECTION BOUNDARY LAYER FLOW AT A FORWARD STAGNATION POINT WITH NEWTONIAN HEATING. Chemical Engineering Communications, 2009, 196, 987-996.	1.5	50
48	Boundary Layer on a Moving Wall with Suction and Injection. Chinese Physics Letters, 2007, 24, 2274-2276.	1.3	49
49	Numerical Solution of Flow and Heat Transfer over a Stretching Sheet with Newtonian Heating using the Keller Box Method. Procedia Engineering, 2013, 53, 542-554.	1.2	49
50	Unsteady Three-Dimensional MHD Non-Axisymmetric Homann Stagnation Point Flow of a Hybrid Nanofluid with Stability Analysis. Mathematics, 2020, 8, 784.	1.1	49
51	Effect of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in a porous medium. International Communications in Heat and Mass Transfer, 2007, 34, 464-473.	2.9	48
52	Magnetohydrodynamic Boundary Layer Flow and Heat Transfer of Nanofluids Past a Bidirectional Exponential Permeable Stretching/Shrinking Sheet With Viscous Dissipation Effect. Journal of Heat Transfer, 2019, 141, .	1.2	47
53	Mixed convection boundary layer flow adjacent to a vertical surface embedded in a stable stratified medium. International Journal of Heat and Mass Transfer, 2008, 51, 3693-3695.	2.5	46
54	Flow and heat transfer over an unsteady stretching sheet inÂaÂmicropolar fluid. Meccanica, 2011, 46, 935-942.	1.2	46

#	Article	IF	CITATIONS
55	Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet. Journal of Magnetism and Magnetic Materials, 2018, 465, 365-374.	1.0	46
56	Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink. Energies, 2019, 12, 788.	1.6	46
57	Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer, 2021, 123, 105205.	2.9	46
58	Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 2008, 51, 1150-1155.	2.5	45
59	MHD boundary-layer flow due to a moving extensible surface. Journal of Engineering Mathematics, 2008, 62, 23-33.	0.6	45
60	Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica, 2011, 46, 1103-1112.	1.2	45
61	Unsteady Micropolar Fluid over a Permeable Curved Stretching Shrinking Surface. Mathematical Problems in Engineering, 2017, 2017, 1-13.	0.6	44
62	Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux. Zeitschrift Fur Angewandte Mathematik Und Physik, 2008, 59, 100-123.	0.7	43
63	Solution of Delay Differential Equation by Means ofÂHomotopy Analysis Method. Acta Applicandae Mathematicae, 2009, 108, 395-412.	0.5	43
64	Adaptation of homotopy analysis method for the numeric–analytic solution of Chen system. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2336-2346.	1.7	43
65	The Brinkman model for the mixed convection boundary layer flow past a horizontal circular cylinder in a porous medium. International Journal of Heat and Mass Transfer, 2003, 46, 3167-3178.	2.5	42
66	Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface. Canadian Journal of Physics, 2006, 84, 399-410.	0.4	42
67	Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet. Scientific Reports, 2016, 6, 24632.	1.6	42
68	Unsteady Stagnation Point Flow of Hybrid Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet with Velocity Slip. Mathematics, 2020, 8, 1649.	1.1	42
69	Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Applied Mathematics and Mechanics (English Edition), 2014, 35, 155-166.	1.9	41
70	Stability analysis of unsteady MHD stagnation point flow and heat transfer over a shrinking sheet in the presence of viscous dissipation. Chinese Journal of Physics, 2019, 57, 116-126.	2.0	39
71	Thermal Radiation and MHD Effects in the Mixed Convection Flow of Fe3O4–Water Ferrofluid towards a Nonlinearly Moving Surface. Processes, 2020, 8, 95.	1.3	39
72	A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip. Energies, 2019, 12, 1268.	1.6	36

#	Article	IF	CITATIONS
73	MHD Mixed Convection Boundary Layer Flow Toward a Stagnation Point on a Vertical Surface With Induced Magnetic Field. Journal of Heat Transfer, 2011, 133, .	1.2	34
74	Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics, 2021, 72, 461-474.	2.0	34
75	The Schneider problem for a micropolar fluid. Fluid Dynamics Research, 2006, 38, 489-502.	0.6	33
76	Boundary-layer flow of a micropolar fluid on a continuously moving or fixed permeable surface. International Journal of Heat and Mass Transfer, 2007, 50, 4743-4748.	2.5	33
77	Series Solutions of Systems of Nonlinear Fractional Differential Equations. Acta Applicandae Mathematicae, 2009, 105, 189-198.	0.5	33
78	Melting heat transfer in hybrid nanofluid flow along a moving surface. Journal of Thermal Analysis and Calorimetry, 2022, 147, 567-578.	2.0	33
79	Mixed convection boundary layer flow about an isothermal sphere in a micropolar fluid. International Journal of Thermal Sciences, 2003, 42, 283-293.	2.6	32
80	Flow and heat transfer past a permeable power-law deformable plate with orthogonal shear in a hybrid nanofluid. AEJ - Alexandria Engineering Journal, 2020, 59, 1869-1879.	3.4	32
81	MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chinese Journal of Physics, 2022, 79, 13-27.	2.0	32
82	Scaling group analysis of bioconvective micropolar fluid flow and heat transfer in a porous medium. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1943-1955.	2.0	31
83	Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux. Heat and Mass Transfer, 2004, 40, 219-227.	1.2	30
84	Dual Solutions in Magnetohydrodynamic Mixed Convection Flow Near a Stagnation-Point on a Vertical Surface. Journal of Heat Transfer, 2007, 129, 1212-1216.	1.2	30
85	MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature. Acta Mechanica, 2008, 196, 75-86.	1.1	30
86	Forced-convection heat transfer over a circular cylinder with Newtonian heating. Journal of Engineering Mathematics, 2011, 69, 101-110.	0.6	30
87	The effects of transpiration on the boundary layer flow and heat transfer over a vertical slender cylinder. International Journal of Non-Linear Mechanics, 2007, 42, 1010-1017.	1.4	29
88	Dual solutions in mixed convection boundary layer flow of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1324-1333.	1.7	29
89	Mixed convection boundary layer flow over a horizontal circular cylinder with Newtonian heating. Heat and Mass Transfer, 2010, 46, 1411-1418.	1.2	29
90	Steady Mixed Convection Flow on a Horizontal Circular Cylinder Embedded in a Porous Medium Filled by a Nanofluid Containing Gyrotactic Micro-Organisms. Journal of Heat Transfer, 2013, 135, .	1.2	29

#	Article	IF	CITATIONS
91	Thermal Marangoni Flow Past a Permeable Stretching/Shrinking Sheet in a Hybrid Cu-Al2O3/Water Nanofluid. Sains Malaysiana, 2020, 49, 211-222.	0.3	29
92	Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder. International Communications in Heat and Mass Transfer, 2022, 134, 106020.	2.9	29
93	FREE CONVECTION BOUNDARY LAYER ON A SPHERE WITH CONSTANT SURFACE HEAT FLUX IN A MICROPOLAR FLUID. International Communications in Heat and Mass Transfer, 2002, 29, 1129-1138.	2.9	28
94	Mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 576-606.	1.6	28
95	Stagnation-point flow past a shrinking sheet in a nanofluid. Open Physics, 2011, 9, .	0.8	27
96	Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water based fluid. Meccanica, 2011, 46, 833-843.	1.2	27
97	Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties. Physica A: Statistical Mechanics and Its Applications, 2020, 556, 124773.	1.2	26
98	Stability analysis of unsteady stagnation-point gyrotactic bioconvection flow and heat transfer towards the moving sheet in a nanofluid. Chinese Journal of Physics, 2020, 65, 538-553.	2.0	26
99	Stagnation-point flow over a permeable stretching/shrinking sheet in a copper-water nanofluid. Boundary Value Problems, 2013, 2013, 39.	0.3	25
100	Mixed Convective Flow and Heat Transfer of a Dual Stratified Micropolar Fluid Induced by a Permeable Stretching/Shrinking Sheet. Entropy, 2019, 21, 1162.	1.1	25
101	Mixed convection stagnation-point flow of Cross fluid over a shrinking sheet with suction and thermal radiation. Physica A: Statistical Mechanics and Its Applications, 2022, 585, 126398.	1.2	25
102	Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2355-2358.	0.9	24
103	Heat transfer over an unsteady stretching surface with prescribed heat flux. Canadian Journal of Physics, 2008, 86, 853-855.	0.4	24
104	MHD mixed convection boundary layer flow towards a stretching vertical surface with constant wall temperature. International Journal of Heat and Mass Transfer, 2010, 53, 5330-5334.	2.5	24
105	Modeling of Free Convection Boundary Layer Flow onÂaÂSolid Sphere with Newtonian Heating. Acta Applicandae Mathematicae, 2010, 112, 263-274.	0.5	24
106	MHD flow and heat transfer over stretching/shrinking sheets with external magnetic field, viscous dissipation and Joule effects. Canadian Journal of Chemical Engineering, 2012, 90, 1336-1346.	0.9	24
107	Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model. Physics of Fluids, 2018, 30, .	1.6	24
108	Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses. Results in Physics, 2018, 10, 395-405.	2.0	24

#	Article	IF	CITATIONS
109	Boundary Layer Flow and Heat Transfer over a Permeable Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity. Journal of Applied Fluid Mechanics, 2016, 9, 2025-2036.	0.4	24
110	Moving wedge and flat plate in a power-law fluid. International Journal of Non-Linear Mechanics, 2011, 46, 1017-1021.	1.4	23
111	Mixed convection flow from a horizontal circular cylinder embedded in a porous medium filled by a nanofluid: Buongiorno–Darcy model. International Journal of Thermal Sciences, 2014, 84, 21-33.	2.6	23
112	Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid. International Journal of Mechanical Sciences, 2017, 131-132, 663-671.	3.6	23
113	Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction. European Journal of Mechanics, B/Fluids, 2018, 72, 179-188.	1.2	23
114	Magnetic Impact on the Unsteady Separated Stagnation-Point Flow of Hybrid Nanofluid with Viscous Dissipation and Joule Heating. Mathematics, 2022, 10, 2356.	1.1	23
115	MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. International Journal of Heat and Mass Transfer, 2010, 53, 4506-4510.	2.5	22
116	Three-dimensional mixed convection stagnation-point flow over a permeable vertical stretching/shrinking surface with a velocity slip. Chinese Journal of Physics, 2017, 55, 1865-1882.	2.0	22
117	Non-uniqueness solutions for the thin Carreau film flow and heat transfer over an unsteady stretching sheet. International Communications in Heat and Mass Transfer, 2020, 117, 104776.	2.9	22
118	Dual solutions in mixed convection boundary-layer flow with suction or injection. IMA Journal of Applied Mathematics, 2007, 72, 451-463.	0.8	21
119	Similarity solutions for mixed convection boundary layer flow over a permeable horizontal flat plate. Applied Mathematics and Computation, 2010, 217, 2619-2630.	1.4	21
120	A Stability Analysis on Mixed Convection Boundary Layer Flow along a Permeable Vertical Cylinder in a Porous Medium Filled with a Nanofluid and Thermal Radiation. Applied Sciences (Switzerland), 2018, 8, 483.	1.3	21
121	Unsteady shrinking sheet with mass transfer in a rotating fluid. International Journal for Numerical Methods in Fluids, 2011, 66, 1465-1474.	0.9	20
122	Mixed convection boundary layer flow past a vertical cone embedded in a porous medium subjected to a convective boundary condition. Propulsion and Power Research, 2016, 5, 118-122.	2.0	20
123	Impact of heat generation/absorption on the unsteady magnetohydrodynamic stagnation point flow and heat transfer of nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 557-574.	1.6	20
124	Mixed convection hybrid nanofluid flow over an exponentially accelerating surface in a porous media. Neural Computing and Applications, 2021, 33, 15719-15729.	3.2	20
125	Radiation effect on Marangoni convection boundary layer flow of a nanofluid. Mathematical Sciences, 2012, 6, 1.	1.0	19
126	Numerical solutions of free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid. Meccanica, 2012, 47, 1261-1269.	1.2	19

#	Article	IF	CITATIONS
127	Three-Dimensional Magnetohydrodynamic Mixed Convection Flow of Nanofluids over a Nonlinearly Permeable Stretching/Shrinking Sheet with Velocity and Thermal Slip. Applied Sciences (Switzerland), 2018, 8, 1128.	1.3	19
128	Non-axisymmetric Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4583-4606.	1.6	19
129	Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrodinger-KdV equation. Journal of Applied Mathematics and Computing, 2009, 31, 1-12.	1.2	18
130	Unsteady flow and heat transfer past an axisymmetric permeable shrinking sheet with radiation effect. International Journal for Numerical Methods in Fluids, 2011, 67, 1310-1320.	0.9	18
131	Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus. International Communications in Heat and Mass Transfer, 2020, 114, 104568.	2.9	18
132	Unsteady MHD Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point. Mathematics, 2021, 9, 549.	1.1	18
133	Homotopy approach for the hyperchaotic Chen system. Physica Scripta, 2010, 81, 045005.	1.2	17
134	Mixed Convection Boundary Layer Flow Embedded in a Thermally Stratified Porous Medium Saturated by a Nanofluid. Advances in Mechanical Engineering, 2013, 5, 121943.	0.8	17
135	Mixed convection stagnation flow towards a vertical shrinking sheet. International Journal of Heat and Mass Transfer, 2014, 73, 839-848.	2.5	17
136	Unsteady viscous MHD flow over a permeable curved stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2370-2392.	1.6	17
137	The effect of vertical throughflow on the boundary layer flow of a nanofluid past a stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1910-1927.	1.6	17
138	A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 809-828.	1.6	17
139	Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1686-1705.	1.6	17
140	Steady mixed convection boundary-layer flow over a vertical flat surface in a porous medium filled with water at 4°C: variable surface heat flux. Transport in Porous Media, 2007, 70, 307-321.	1.2	16
141	Stagnation flow of a micropolar fluid towards a vertical permeable surface. International Communications in Heat and Mass Transfer, 2008, 35, 276-281.	2.9	16
142	Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model. Scientific Reports, 2015, 5, 14640.	1.6	16
143	A study on non-Newtonian transport phenomena in a mixed convection stagnation point flow with numerical simulation and stability analysis. European Physical Journal Plus, 2019, 134, 1.	1.2	16
144	Free convection boundary layer on an isothermal horizontal circular cylinder in a micropolar fluid. , 2002, , .		16

#	Article	IF	CITATIONS
145	Steady mixed convection boundary layer flow over a vertical flat plate in a porous medium filled with water at 4°C: case of variable wall temperature. Transport in Porous Media, 2007, 69, 359-372.	1.2	15
146	MHD convective flow adjacent to a vertical surface with prescribed wall heat flux. International Communications in Heat and Mass Transfer, 2009, 36, 554-557.	2.9	15
147	Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity. International Journal of Thermal Sciences, 2009, 48, 1943-1948.	2.6	15
148	Unsteady threeâ€dimensional boundary layer flow due to a stretching surface in a micropolar fluid. International Journal for Numerical Methods in Fluids, 2012, 68, 1561-1573.	0.9	15
149	Effects of anisotropic slip on three-dimensional stagnation-point flow past a permeable moving surface. European Journal of Mechanics, B/Fluids, 2017, 65, 515-521.	1.2	15
150	MHD boundary layer flow due to a moving wedge in a parallel stream with the induced magnetic field. Boundary Value Problems, 2013, 2013, .	0.3	14
151	Numerical investigation of stagnation point flow over a stretching sheet with convective boundary conditions. Boundary Value Problems, 2013, 2013, 4.	0.3	14
152	The effect of unsteadiness on mixed convection boundary-layer stagnation-point flow over a vertical flat surface embedded in a porous medium. International Journal of Heat and Mass Transfer, 2014, 77, 147-156.	2.5	14
153	Flow and heat transfer past a permeable nonlinearly stretching/shrinking sheet in a nanofluid: A revised model with stability analysis. Journal of Molecular Liquids, 2017, 233, 211-221.	2.3	14
154	Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Engineering Science and Technology, an International Journal, 2021, 24, 1201-1210.	2.0	14
155	Dual solutions in MHD flow on a nonlinear porous shrinking sheet in a viscous fluid. Boundary Value Problems, 2013, 2013, .	0.3	13
156	Unsteady flow and heat transfer past a permeable stretching/shrinking sheet in a nanofluid: A revised model with stability and regression analyses. Journal of Molecular Liquids, 2018, 261, 550-564.	2.3	13
157	Exploration of dilatant nanofluid effects conveying microorganism utilizing scaling group analysis: FDM Blottner. Physica A: Statistical Mechanics and Its Applications, 2020, 549, 124040.	1.2	13
158	Students' Inclination towards English Language as Medium of Instruction in the Teaching of Science and Mathematics. Procedia, Social and Behavioral Sciences, 2011, 18, 353-360.	0.5	12
159	Mixed convection boundary-layer flow about an isothermal solid sphere in a nanofluid. Physica Scripta, 2011, 84, 025403.	1.2	12
160	Free- and Mixed-Convection Flow Past a Horizontal Surface in a Nanofluid. Journal of Thermophysics and Heat Transfer, 2012, 26, 375-382.	0.9	12
161	The development of forced convection heat transfer near a forward stagnation point with Newtonian heating. Journal of Engineering Mathematics, 2012, 74, 53-60.	0.6	12
162	MHD Stagnation-Point Flow over a Nonlinearly Stretching/Shrinking Sheet. Journal of Aerospace Engineering, 2013, 26, 829-834.	0.8	12

#	Article	IF	CITATIONS
163	Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1747-1767.	1.6	12
164	Flow and heat transfer past a permeable stretching/shrinking sheet in Cuâ^'Al2O3/water hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 1197-1222.	1.6	12
165	Free convection boundary layer flow over vertical and horizontal flat plates embedded in a porous medium under mixed thermal boundary conditions. International Communications in Heat and Mass Transfer, 2006, 33, 87-93.	2.9	11
166	Boundary-layer flow of a micropolar fluid on a continuous flatplate moving in a parallel stream with uniform surface heat flux. Canadian Journal of Physics, 2007, 85, 869-878.	0.4	11
167	Mixed convection boundary layer flow along vertical moving thin needles with variable heat flux. Heat and Mass Transfer, 2008, 44, 473-479.	1.2	11
168	Micropolar Fluid Flow and Heat Transfer over a Nonlinearly Stretching Plate with Viscous Dissipation. Mathematical Problems in Engineering, 2013, 2013, 1-5.	0.6	11
169	Boundary layer flow of a dusty fluid over a permeable shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 758-772.	1.6	11
170	Boundary layer flow of nanofluid over a moving surface in a flowing fluid using revised model with stability analysis. International Journal of Mechanical Sciences, 2017, 131-132, 1073-1081.	3.6	11
171	Stagnation Point Flow with Time-Dependent Bionanofluid Past a Sheet: Richardson Extrapolation Technique. Processes, 2019, 7, 722.	1.3	11
172	Effects of heat generation/absorption in the Jeffrey fluid past a permeable stretching/shrinking disc. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	11
173	Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method. Chinese Physics Letters, 2008, 25, 589-592.	1.3	10
174	Dual Solutions on Thermosolutal Marangoni Forced Convection Boundary Layer with Suction and Injection. Mathematical Problems in Engineering, 2011, 2011, 1-19.	0.6	10
175	Boundary-Layer Flow and Heat Transfer of Nanofluids over a Permeable Moving Surface in the Presence of a Coflowing Fluid. Advances in Mechanical Engineering, 2014, 6, 521236.	0.8	10
176	Triple Solutions of Carreau Thin Film Flow with Thermocapillarity and Injection on an Unsteady Stretching Sheet. Energies, 2020, 13, 3177.	1.6	10
177	Effects of Thermal Radiation on Mixed Convection Flow over a Permeable Vertical Shrinking Flat Plate in an Oldroyd-B Fluid. Sains Malaysiana, 2018, 47, 1069-1076.	0.3	10
178	FORCED CONVECTION BOUNDARY LAYER STAGNATION-POINT FLOW IN DARCY-FORCHHEIMER POROUS MEDIUM PAST A SHRINKING SHEET. Frontiers in Heat and Mass Transfer, 0, 7, .	0.1	10
179	Entropy Analysis and Melting Heat Transfer in the Carreau Thin Hybrid Nanofluid Film Flow. Mathematics, 2021, 9, 3092.	1.1	10
180	The Impact of Thermal Radiation on Maxwell Hybrid Nanofluids in the Stagnation Region. Nanomaterials, 2022, 12, 1109.	1.9	10

#	Article	IF	CITATIONS
181	Feedback Control of the Marangoni–Bénard Instability in a Fluid Layer with a Free-Slip Bottom. Journal of the Physical Society of Japan, 2007, 76, 014401.	0.7	9
182	MIXED CONVECTION BOUNDARY LAYER FLOW PAST A HORIZONTAL CIRCULAR CYLINDER EMBEDDED IN A POROUS MEDIUM SATURATED BY A NANOFLUID: BRINKMAN MODEL. Journal of Porous Media, 2013, 16, 445-457.	1.0	9
183	Numerical solutions for unsteady boundary layer flow of a dusty fluid past a permeable stretching/shrinking surface with particulate viscous effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1374-1391.	1.6	9
184	THE EFFECTS OF SUCTION ON FORCED CONVECTION BOUNDARY LAYER STAGNATION POINT SLIP FLOW IN A DARCY POROUS MEDIUM TOWARDS A SHRINKING SHEET WITH PRESENCE OF THERMAL RADIATION: A STABILITY ANALYSIS. Journal of Porous Media, 2018, 21, 623-636.	1.0	9
185	Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid. Magnetohydrodynamics, 2007, 43, 83-98.	0.5	9
186	Boundary Layer Stagnation-Point Slip Flow and Heat Transfer towards a Shrinking/Stretching Cylinder over a Permeable Surface. Applied Mathematics, 2015, 06, 466-475.	0.1	9
187	Stability Analysis of Unsteady MHD Rear Stagnation Point Flow of Hybrid Nanofluid. Mathematics, 2021, 9, 2428.	1.1	9
188	Dusty ferrofluid transport phenomena towards a non-isothermal moving surface with viscous dissipation. Chinese Journal of Physics, 2022, 75, 139-151.	2.0	9
189	Mixed Convection Boundary-Layer Flow in a Porous Medium Filled with Water Close to its Maximum Density. Transport in Porous Media, 2009, 76, 139-151.	1.2	8
190	On the homotopy analysis method for the exact solutions of Helmholtz equation. Chaos, Solitons and Fractals, 2009, 41, 1873-1879.	2.5	8
191	MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux. Chinese Physics Letters, 2009, 26, 014702.	1.3	8
192	Mixed convection boundary layer flow past a wedge with permeable walls. Heat and Mass Transfer, 2010, 46, 1013-1018.	1.2	8
193	The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno's Model: A Revised Model. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 81-89.	0.7	8
194	Dusty hybrid nanofluid flow over a shrinking sheet with magnetic field effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, ahead-of-print, .	1.6	8
195	Mixed Convection Boundary Layer with Internal Heat Generation in a Porous Medium Filled with a Nanofluid. Advanced Science Letters, 2012, 13, 833-835.	0.2	8
196	The Readiness of Mathematics and Science Lecturers to Teach in English from Students' Perspective. Procedia, Social and Behavioral Sciences, 2011, 18, 342-347.	0.5	7
197	Radiation effects on Marangoni convection boundary layer over a permeable surface. Meccanica, 2013, 48, 83-89.	1.2	7
198	MHD mixed convection boundary layer stagnation-point flow on a vertical surface with induced magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4697-4710.	1.6	7

#	Article	IF	CITATIONS
199	Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Nanomaterials, 2022, 12, 1771.	1.9	7
200	Students' Perceptions of the Implementation of Teaching and Learning of Science and Mathematics in English. Procedia, Social and Behavioral Sciences, 2011, 18, 361-366.	0.5	6
201	MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect. AIP Conference Proceedings, 2013, , .	0.3	6
202	Similarity Solution of Marangoni Convection Boundary Layer Flow over a Flat Surface in a Nanofluid. Journal of Applied Mathematics, 2013, 2013, 1-8.	0.4	6
203	MHD mixed convection boundary layer flow of a Casson fluid bounded by permeable shrinking sheet with exponential variation. Scientia Iranica, 2017, 24, 637-647.	0.3	6
204	Similarity solutions for the mixed convection flow over a vertical plate with thermal radiation. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 149-153.	2.4	5
205	Stagnation point flow, heat transfer and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer. AIP Conference Proceedings, 2016, , .	0.3	5
206	Mixed convection flow over a horizontal circular cylinder with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno–Darcy model. Heat and Mass Transfer, 2016, 52, 1983-1991.	1.2	5
207	The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet. Journal of Physics: Conference Series, 2017, 949, 012016.	0.3	5
208	Mixed convection flow over a horizontal circular cylinder in a viscous fluid at the lower stagnation point with convective boundary conditions. ScienceAsia, 2016, 42S, 5.	0.2	5
209	Unsteady mixed convection near the forward stagnation point of a two-dimensional symmetric body. International Communications in Heat and Mass Transfer, 2003, 30, 673-682.	2.9	4
210	Effect of non-uniform temperature gradient and magnetic field on onset of Marangoni convection heated from below by a constant heat flux. Applied Mathematics and Mechanics (English Edition), 2010, 31, 797-804.	1.9	4
211	Boundary layer flow and heat transfer of a micropolar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 502-507.	2.4	4
212	Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid. Journal of Applied Mathematics, 2013, 2013, 1-6.	0.4	4
213	Mixed convection flow about a solid sphere with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. , 2014, , .		4
214	Stability analysis of flow and heat transfer on a permeable moving plate in a co-flowing nanofluid. AIP Conference Proceedings, 2014, , .	0.3	4
215	Three-dimensional viscous flow and heat transfer over a permeable shrinking sheet. International Communications in Heat and Mass Transfer, 2014, 56, 109-113.	2.9	4
216	Stagnation-point flow of a nanofluid past a stretching/shrinking sheet with heat generation/absorption and convective boundary conditions. AIP Conference Proceedings, 2016, , .	0.3	4

#	Article	IF	CITATIONS
217	MHD stagnation point flow over a stretching cylinder with variable thermal conductivity and joule heating. AIP Conference Proceedings, 2016, , .	0.3	4
218	Dual solutions of MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet in a porous medium. , 2017, , .		4
219	MHD stagnation point flow and heat transfer of a nanofluid over a permeable nonlinear stretching/shrinking sheet with viscous dissipation effect. AIP Conference Proceedings, 2018, , .	0.3	4
220	Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet. Indian Journal of Physics, 2018, 92, 637-645.	0.9	4
221	Unsteady flow and heat transfer over a permeable stretching/shrinking sheet with generalized slip velocity. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1457-1470.	1.6	4
222	Effect of heat generation on mixed convection of micropolar Casson fluid over a stretching/shrinking sheet with suction. Journal of Physics: Conference Series, 2019, 1212, 012024.	0.3	4
223	Unsteady mixed convection flow at a three-dimensional stagnation point. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 236-250.	1.6	4
224	Numerical solutions of radiation effect on magnetohydrodynamic free convection boundary layer flow about a solid sphere with Newtonian heating. Applied Mathematical Sciences, 0, 8, 6989-7000.	0.0	4
225	Numerical solutions of MHD rotating flow and heat transfer over a permeable shrinking sheet. ScienceAsia, 2014, 40S, 58.	0.2	4
226	Unsteady flow across a stretching surface. International Communications in Heat and Mass Transfer, 2010, 37, 476-479.	2.9	3
227	Similarity solutions for the flow and heat transfer over a nonlinear stretching/shrinking sheet in a nanofluid. AIP Conference Proceedings, 2012, , .	0.3	3
228	Transformation of Language in Teaching and Learning Policy. Procedia, Social and Behavioral Sciences, 2012, 59, 685-691.	0.5	3
229	Free convection boundary layer flow near the lower stagnation point of a solid sphere with convective boundary conditions in a micropolar fluid. , 2014, , .		3
230	Unsteady three-dimensional flow and heat transfer past a permeable stretching/shrinking surface. AIP Conference Proceedings, 2015, , .	0.3	3
231	Dual solutions of magnetohydrodynamic stagnation point flow and heat transfer of viscoelastic nanofluid over a permeable stretching/shrinking sheet with thermal radiation. Journal of Physics: Conference Series, 2017, 890, 012063.	0.3	3
232	A stability analysis on unsteady mixed convection stagnation-point flow over a moving plate along the flow impingement direction. Journal of Physics: Conference Series, 2017, 890, 012041.	0.3	3
233	Local Similarity Solutions for Laminar Boundary Layer Flow along a Moving Cylinder in a Parallel Stream. Lecture Notes in Computer Science, 2007, , 224-235.	1.0	3
234	MHD mixed convection stagnation point flow of an upper convected Maxwell fluid on a vertical surface with an induced magnetic field. Magnetohydrodynamics, 2011, 47, 61-78.	0.5	3

#	Article	IF	CITATIONS
235	Mixed bioconvection stagnation point flow towards a vertical plate in alumina-copper/water. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3413-3438.	1.6	3
236	Marangoni Driven Boundary Layer Flow past a Flat Plate in Nanofluid with Suction/Injection. , 2010, , .		2
237	Magnetohydrodynamic flow over a moving plate in a parallel stream with an induced magnetic field. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 397-402.	2.4	2
238	Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2011, 66, 495-499.	0.7	2
239	Mixed convection in laminar film flow of a micropolar fluid. International Communications in Heat and Mass Transfer, 2012, 39, 36-39.	2.9	2
240	Mixed convection flow about a solid sphere with a constant surface heat flux embedded in a porous medium filled with a nanofluid. , 2013, , .		2
241	Boundary layer flow and heat transfer over a stretching sheet with convective boundary conditions. , 2013, , .		2
242	MHD stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet. AIP Conference Proceedings, 2014, , .	0.3	2
243	Boundary layer flow and heat transfer past a moving plate with suction and injection. , 2014, , .		2
244	Unsteady mixed convection stagnation-point flow over a plate moving along the direction of flow impingement. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 120-141.	1.6	2
245	The effects of chemical reaction and thermal radiation on MHD boundary layer flow of a nanofluid over an exponentially stretching/shrinking sheet: A revised model. AIP Conference Proceedings, 2017, , .	0.3	2
246	Boundary layer flow and heat transfer in a viscous fluid over a stretching sheet with viscous dissipation, internal heat generation and prescribed heat flux. AIP Conference Proceedings, 2017, , .	0.3	2
247	The stagnation-point flow and heat transfer of nanofluid over a shrinking surface in magnetic field and thermal radiation with slip effects : a stability analysis. Journal of Physics: Conference Series, 2017, 890, 012055.	0.3	2
248	Unsteady Boundary Layer Flow of a Casson Fluid past a Permeable Stretching/Shrinking Sheet: Paired Solutions and Stability Analysis. Journal of Physics: Conference Series, 2019, 1212, 012028.	0.3	2
249	Effects of thermal radiation and slip on unsteady stagnation-point flow and heat transfer past a permeable shrinking sheet: A stability analysis. AIP Conference Proceedings, 2019, , .	0.3	2
250	Mathematical modeling of boundary layer flow over a moving thin needle with variable heat flux. Lecture Notes in Electrical Engineering, 2009, , 43-54.	0.3	2
251	Modelling of Stagnation-Point Flow and Diffusion of Chemically Reactive Species Past A Permeable Quadratically Stretching/Shrinking Sheet. , 2015, , .		2
252	Marangoni Mixed Convection Boundary Layer Flow in a Nanofluid. Malaysian Journal of Fundamental and Applied Sciences, 2014, 9, .	0.4	2

#	Article	IF	CITATIONS
253	Unsteady Separated Stagnation-Point Flow Past a Moving Plate with Suction Effect in Hybrid Nanofluid. Mathematics, 2022, 10, 1933.	1.1	2
254	Onset Of Marangoni Convection In A Saturated Porous Medium. AIP Conference Proceedings, 2008, , .	0.3	1
255	Numerical Investigation of Free Convection over a Permeable Vertical Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions. , 2010, , .		1
256	Homotopy solution for flow of a micropolar fluid on a continuous moving surface. International Journal for Numerical Methods in Fluids, 2011, 66, 608-621.	0.9	1
257	An MHD stagnation slip flow on a moving plate. Fluid Dynamics Research, 2011, 43, 015502.	0.6	1
258	Ingham problem for free convection near a continuously moving vertical permeable plate. IMA Journal of Applied Mathematics, 2012, 77, 578-589.	0.8	1
259	Teaching Science and Mathematics in English Steering Mastery in English Language Amongst Sciences Students in UKM. Procedia, Social and Behavioral Sciences, 2012, 59, 670-677.	0.5	1
260	Numerical solutions of mixed convection flow on a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. AIP Conference Proceedings, 2013, , .	0.3	1
261	Numerical solutions of Wang's stretching/shrinking sheet problem for nanofluids. , 2013, , .		1
262	Numerical solution of the free convection boundary layer flow over a horizontal circular cylinder with convective boundary conditions. , 2014, , .		1
263	Numerical solutions of three-dimensional boundary layer flow and heat transfer past a permeable shrinking surface in a Cu-water nanofluid. , 2014, , .		1
264	Mixed convection boundary layer flow over a stretching vertical sheet in a thermally stratified fluid. , 2014, , .		1
265	Three-dimensional viscous flow over an unsteady permeable stretching/shrinking sheet. , 2014, , .		1
266	Numerical Solutions of Free Convection Boundary Layer Flow on a Solid Sphere with Convective Boundary Conditions. Journal of Physics: Conference Series, 2014, 495, 012025.	0.3	1
267	Magnetohydrodynamic stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet. AIP Conference Proceedings, 2015, , .	0.3	1
268	Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking surface in a Carreau fluid. AIP Conference Proceedings, 2016, , .	0.3	1
269	Stability analysis of MHD thermosolutal Marangoni convection boundary layer flow. AIP Conference Proceedings, 2016, , .	0.3	1
270	Stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet with convective boundary conditions and suction. AIP Conference Proceedings, 2017, , .	0.3	1

#	Article	IF	CITATIONS
271	Numerical solution of heat transfer past a stretching sheet with viscous dissipation and internal heat generation with prescribed surface temperature. AIP Conference Proceedings, 2017, , .	0.3	1
272	Numerical solutions of MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet with chemical reaction and transpiration. AIP Conference Proceedings, 2017, , .	0.3	1
273	Stability analysis of flow and heat transfer over a permeable stretching/shrinking sheet with internal heat generation and viscous dissipation. Journal of Physics: Conference Series, 2017, 890, 012039.	0.3	1
274	Mixed Convection Boundary Layer Flow Over A Vertical Permeable Plate In A Porous Medium: Opposing Flow Case. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.3	1
275	Dual Solutions of MHD Three-Dimensional Flow Over a Permeable Stretching/Shrinking Surface with Velocity Slip and Thermal Radiation in a Nanofluid. Journal of Computational and Theoretical Nanoscience, 2017, 14, 1644-1652.	0.4	1
276	Ingham Problem for Mixed Convection Flow of a Nanofluid over a Moving Vertical Plate with Suction and Injection Effects. Sains Malaysiana, 2018, 47, 2213-2221.	0.3	1
277	DUAL SOLUTIONS AND STABILITY ANALYSIS OF UNSTEADY STAGNATION-POINT FLOW AND HEAT TRANSFER OVER A SHRINKING SURFACE WITH RADIATION EFFECT. JP Journal of Heat and Mass Transfer, 2017, 14, 29-45.	0.1	1
278	Numerical investigation of MHD stagnation point flow and heat transfer over a permeable shrinking sheet with external magnetic field, viscous dissipation and Joule heating. , 2012, , .		0
279	Subject Difficulty Index in PPSM, FST, UKM: 2009/2010 and 2010/2011 Academic Sessions. Procedia, Social and Behavioral Sciences, 2012, 59, 304-312.	0.5	0
280	Transformation of Teaching and Learning Mathematics in English: Are the Lecturers Ready?. Procedia, Social and Behavioral Sciences, 2012, 59, 650-656.	0.5	0
281	Transformation of English Language as the Language of Knowledge in UKM Teaching and Learning: Highlights of Students' Perspectives. Procedia, Social and Behavioral Sciences, 2012, 59, 678-684.	0.5	0
282	Effect of thermal radiation on unsteady stagnation-point flow with mass transfer. , 2013, , .		0
283	Preface: 20th National Symposium on Mathematical Sciences. , 2013, , .		0
284	MHD flow and heat transfer over a moving plate in a parallel stream with induced magnetic field. , 2013, , .		0
285	Radiation effects on MHD flow and heat transfer over a stretching sheet with convective boundary conditions. , 2013, , .		0
286	Numerical solutions of flow and heat transfer on a moving plate in a co-flowing nanofluid. , 2014, , .		0
287	Three-dimensional stagnation point viscous flow on a permeable moving surface with anisotropic slip. AIP Conference Proceedings, 2015, , .	0.3	0
288	Effects of non-uniform heat source and magnetic field on the flow and heat transfer over a nonlinearly stretching sheet with suction. AlP Conference Proceedings, 2015, , .	0.3	0

#	Article	IF	CITATIONS
289	Stability analysis of MHD viscous flow and heat transfer over a permeable shrinking surface. AIP Conference Proceedings, 2015, , .	0.3	0
290	Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid. , 2015, , .		0
291	Mixed convection flow past through a stretching cylinder with heat generation/absorption and convective boundary condition. AIP Conference Proceedings, 2016, , .	0.3	0
292	Simultaneous Effects of Soret and Dufour onÂthe Unsteady Stagnation Point Flow ofÂMicropolar Fluid Towards a Permeable Stretching Sheet. , 2016, , 45-59.		0
293	Dual solutions of stagnation point flow and heat transfer of Maxwell fluid over a permeable stretching/shrinking sheet in the presence of nanoparticles. AIP Conference Proceedings, 2017, , .	0.3	0
294	Free-convection flow past a horizontal surface in a nanofluid with suction/injection. AIP Conference Proceedings, 2017, , .	0.3	0
295	A stability analysis on forced convection boundary layer stagnation-point slip flow in Darcy-Forchheimer porous medium towards a shrinking sheet. AIP Conference Proceedings, 2017, , .	0.3	0
296	MHD boundary layer flow and heat transfer due to an exponentially shrinking sheet in a nanofluid with thermal radiation and chemical reaction. AIP Conference Proceedings, 2017, , .	0.3	0
297	Mixed convection over a horizontal circular cylinder embedded in porous medium immersed in a nanofluid with convective boundary conditions at lower stagnation point: A numerical solution. MATEC Web of Conferences, 2018, 189, 02004.	0.1	0
298	Numerical solutions of boundary layer flow over a nonlinearly permeable shrinking sheet with slip effects. AIP Conference Proceedings, 2019, , .	0.3	0
299	Dual solutions of stagnation-point flow over an exponentially stretching/shrinking sheet in a porous medium with suction and velocity slip: A stability analysis. Journal of Physics: Conference Series, 2019, 1212, 012026.	0.3	0
300	Stability analysis of magnetohydrodynamic stagnation-point flow over a nonlinearly permeable stretching/shrinking sheet with velocity slip. AIP Conference Proceedings, 2019, , .	0.3	0
301	MIXED CONVECTION FLOW ON A VERTICAL PERMEABLE SURFACE IN A POROUS MEDIUM SATURATED BY A NANOFLUID WITH INTERNAL HEAT GENERATION. , 2012, , .		0
302	MIXED CONVECTION FLOW OVER A HORIZONTAL CIRCULAR CYLINDER WITH A CONSTANT SURFACE HEAT FLUX IN A NANOFLUID. , 2012, , .		0
303	MIXED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL FLAT PLATE WITH SUCTION AND VARIABLE HEAT FLUX. JP Journal of Heat and Mass Transfer, 2018, 15, 195-211.	0.1	Ο