
## Michelle Y Simmons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469352/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Spin-Photon Coupling for Atomic Qubit Devices in Silicon. Physical Review Applied, 2022, 17, .                                              | 3.8  | 6         |
| 2  | Engineering topological states in atom-based semiconductor quantum dots. Nature, 2022, 606, 694-699.                                        | 27.8 | 48        |
| 3  | Engineering long spin coherence times of spin–orbit qubits in silicon. Nature Materials, 2021, 20, 38-42.                                   | 27.5 | 40        |
| 4  | Coherent control of a donor-molecule electron spin qubit in silicon. Nature Communications, 2021, 12, 3323.                                 | 12.8 | 27        |
| 5  | Monolithic Three-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction. Nano Letters, 2021, 21, 10092-10098.                  | 9.1  | 5         |
| 6  | Exploiting a Singleâ€Crystal Environment to Minimize the Charge Noise on Qubits in Silicon. Advanced<br>Materials, 2020, 32, e2003361.      | 21.0 | 41        |
| 7  | A two-qubit gate between phosphorus donor electrons in silicon. Nature, 2019, 571, 371-375.                                                 | 27.8 | 222       |
| 8  | Benchmarking high fidelity single-shot readout of semiconductor qubits. New Journal of Physics, 2019, 21, 063011.                           | 2.9  | 29        |
| 9  | Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor. Nature<br>Nanotechnology, 2019, 14, 137-140.               | 31.5 | 50        |
| 10 | Two-electron spin correlations in precision placed donors in silicon. Nature Communications, 2018, 9, 980.                                  | 12.8 | 57        |
| 11 | Two-electron states of a group-V donor in silicon from atomistic full configuration interactions.<br>Physical Review B, 2018, 97, .         | 3.2  | 18        |
| 12 | Single-Shot Single-Gate rf Spin Readout in Silicon. Physical Review X, 2018, 8, .                                                           | 8.9  | 47        |
| 13 | Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor.<br>Science Advances, 2018, 4, eaat9199. | 10.3 | 26        |
| 14 | Spin–orbit coupling in silicon for electrons bound to donors. Npj Quantum Information, 2018, 4, .                                           | 6.7  | 17        |
| 15 | Valley Filtering in Spatial Maps of Coupling between Silicon Donors and Quantum Dots. Physical<br>Review X, 2018, 8, .                      | 8.9  | 13        |
| 16 | Characterization of a Scalable Donor-Based Singlet–Triplet Qubit Architecture in Silicon. Nano<br>Letters, 2018, 18, 4081-4085.             | 9.1  | 10        |
| 17 | Addressable electron spin resonance using donors and donor molecules in silicon. Science Advances, 2018, 4, eaaq1459.                       | 10.3 | 36        |
| 18 | Singlet-triplet minus mixing and relaxation lifetimes in a double donor dot. Applied Physics Letters, 2018, 112, 243105.                    | 3.3  | 2         |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | <i>In Situ</i> Patterning of Ultrasharp Dopant Profiles in Silicon. ACS Nano, 2017, 11, 1683-1688.                                                                                                            | 14.6 | 7         |
| 20 | Dephasing rates for weak localization and universal conductance fluctuations in two dimensional<br>Si:P and Ge:P δ-layers. Scientific Reports, 2017, 7, 46670.                                                | 3.3  | 9         |
| 21 | Atomically engineered electron spin lifetimes of 30 s in silicon. Science Advances, 2017, 3, e1602811.                                                                                                        | 10.3 | 57        |
| 22 | Tunneling Statistics for Analysis of Spin-Readout Fidelity. Physical Review Applied, 2017, 8, .                                                                                                               | 3.8  | 16        |
| 23 | High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon. Physical<br>Review Letters, 2017, 119, 046802.                                                                       | 7.8  | 34        |
| 24 | Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies. ACS Nano, 2017, 11, 2444-2451.                                                                                               | 14.6 | 19        |
| 25 | Electron spin relaxation of single phosphorus donors and donor clusters in atomically engineered silicon devices. , 2017, , .                                                                                 |      | Ο         |
| 26 | Extracting inter-dot tunnel couplings between few donor quantum dots in silicon. New Journal of Physics, 2016, 18, 053041.                                                                                    | 2.9  | 7         |
| 27 | Reaction paths of phosphine dissociation on silicon (001). Journal of Chemical Physics, 2016, 144, 014705.                                                                                                    | 3.0  | 36        |
| 28 | Quantum simulation of the Hubbard model with dopant atoms in silicon. Nature Communications, 2016, 7, 11342.                                                                                                  | 12.8 | 81        |
| 29 | Atomic-precision architectures for the high-fidelity spin read-out of phosphorus donors in silicon. , 2016, , .                                                                                               |      | Ο         |
| 30 | Determining the quantum-coherent to semiclassical transition in atomic-scale quasi-one-dimensional metals. Physical Review B, 2016, 94, .                                                                     | 3.2  | 2         |
| 31 | Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon. Nano Letters, 2016, 16, 5779-5784.                                                                                                   | 9.1  | 20        |
| 32 | Manifestation of a non-Abelian Berry phase in a <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mi>p</mml:mi>-type<br/>semiconductor system. Physical Review B, 2016, 93, .</mml:math<br> | 3.2  | 14        |
| 33 | Publisher's Note: Manifestation of a non-Abelian Berry phase in ap-type semiconductor system [Phys.<br>Rev. B93, 205424 (2016)]. Physical Review B, 2016, 93, .                                               | 3.2  | Ο         |
| 34 | Characterizing Si:P quantum dot qubits with spin resonance techniques. Scientific Reports, 2016, 6,<br>31830.                                                                                                 | 3.3  | 17        |
| 35 | High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum<br>Computation. Physical Review Applied, 2016, 6, .                                                                     | 3.8  | 30        |
| 36 | Mapping the chemical potential landscape of a triple quantum dot. Physical Review B, 2016, 94, .                                                                                                              | 3.2  | 4         |

| #  | Article                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly tunable exchange in donor qubits in silicon. Npj Quantum Information, 2016, 2, .                                                                                                                                                                                                                             | 6.7  | 45        |
| 38 | Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system.<br>Applied Physics Letters, 2016, 108, 152102.                                                                                                                                                                         | 3.3  | 6         |
| 39 | Spatial metrology of dopants in silicon with exact lattice site precision. Nature Nanotechnology, 2016, 11, 763-768.                                                                                                                                                                                                | 31.5 | 45        |
| 40 | Strain and electric field control of hyperfine interactions for donor spin qubits in silicon. Physical<br>Review B, 2015, 91, .                                                                                                                                                                                     | 3.2  | 17        |
| 41 | Impact of nuclear spin dynamics on electron transport through donors. Physical Review B, 2015, 92, .                                                                                                                                                                                                                | 3.2  | 9         |
| 42 | Quantum dot spectroscopy using a single phosphorus donor. Physical Review B, 2015, 92, .                                                                                                                                                                                                                            | 3.2  | 10        |
| 43 | High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:msup><mml:mi>D</mml:mi><mml:mo>â^`</mml:mo></mml:msup>Charge<br/>State. Physical Review Letters. 2015. 115. 166806.</mml:math<br> | 7.8  | 48        |
| 44 | Bottom-up assembly of metallic germanium. Scientific Reports, 2015, 5, 12948.                                                                                                                                                                                                                                       | 3.3  | 21        |
| 45 | A new horizon for quantum information. Npj Quantum Information, 2015, 1, .                                                                                                                                                                                                                                          | 6.7  | 2         |
| 46 | Charge sensing of a few-donor double quantum dot in silicon. Applied Physics Letters, 2015, 107, .                                                                                                                                                                                                                  | 3.3  | 6         |
| 47 | The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers. ACS Nano, 2015, 9, 7080-7084.                                                                                                                                                                                                  | 14.6 | 19        |
| 48 | A surface code quantum computer in silicon. Science Advances, 2015, 1, e1500707.                                                                                                                                                                                                                                    | 10.3 | 193       |
| 49 | Interface-induced heavy-hole/light-hole splitting of acceptors in silicon. Applied Physics Letters, 2015, 106, .                                                                                                                                                                                                    | 3.3  | 15        |
| 50 | Radio frequency reflectometry and charge sensing of a precision placed donor in silicon. Applied Physics Letters, 2015, 107, .                                                                                                                                                                                      | 3.3  | 22        |
| 51 | Suppressing Segregation in Highly Phosphorus Doped Silicon Monolayers. ACS Nano, 2015, 9, 12537-12541.                                                                                                                                                                                                              | 14.6 | 36        |
| 52 | Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum<br>dots. Nature Communications, 2015, 6, 8848.                                                                                                                                                                     | 12.8 | 49        |
| 53 | A Tight-Binding Study of Single-Atom Transistors. Small, 2015, 11, 374-381.                                                                                                                                                                                                                                         | 10.0 | 14        |
| 54 | Spin-Lattice Relaxation Times of Single Donors and Donor Clusters in Silicon. Physical Review Letters, 2014, 113, 246406.                                                                                                                                                                                           | 7.8  | 27        |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Limits to Metallic Conduction in Atomic-Scale Quasi-One-Dimensional Silicon Wires. Physical Review Letters, 2014, 113, 246802.                                                  | 7.8  | 23        |
| 56 | Silicon at the fundamental scaling limit-atomic-scale donor-based quantum electronics. , 2014, , .                                                                              |      | 0         |
| 57 | Statistical modeling of ultra-scaled donor-based silicon phosphorus devices. , 2014, , .                                                                                        |      | 0         |
| 58 | Low resistivity, super-saturation phosphorus-in-silicon monolayer doping. Applied Physics Letters, 2014, 104, .                                                                 | 3.3  | 25        |
| 59 | Single-charge detection by an atomic precision tunnel junction. Applied Physics Letters, 2014, 104, .                                                                           | 3.3  | 16        |
| 60 | Noncollinear Paramagnetism of a GaAs Two-Dimensional Hole System. Physical Review Letters, 2014, 113, 236401.                                                                   | 7.8  | 9         |
| 61 | Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy.<br>Applied Physics Letters, 2014, 104, .                                            | 3.3  | 8         |
| 62 | Disentangling phonon and impurity interactions in δ-doped Si(001). Applied Physics Letters, 2014, 104,<br>173108.                                                               | 3.3  | 16        |
| 63 | Lithography and doping in strained Si towards atomically precise device fabrication. Nanotechnology, 2014, 25, 145302.                                                          | 2.6  | 12        |
| 64 | Spatially resolving valley quantum interference of a donor in silicon. Nature Materials, 2014, 13,<br>605-610.                                                                  | 27.5 | 90        |
| 65 | Determining the Electronic Confinement of a Subsurface Metallic State. ACS Nano, 2014, 8, 10223-10228.                                                                          | 14.6 | 11        |
| 66 | Transport in Asymmetrically Coupled Donor-Based Silicon Triple Quantum Dots. Nano Letters, 2014, 14, 1830-1835.                                                                 | 9.1  | 23        |
| 67 | Determination of the free carrier concentration in atomic-layer doped germanium thin films by infrared spectroscopy. Journal of Optics (United Kingdom), 2014, 16, 094010.      | 2.2  | 8         |
| 68 | Valley Splitting in a Silicon Quantum Device Platform. Nano Letters, 2014, 14, 1515-1519.                                                                                       | 9.1  | 18        |
| 69 | Spin blockade and exchange in Coulomb-confined silicon double quantum dots. Nature<br>Nanotechnology, 2014, 9, 430-435.                                                         | 31.5 | 117       |
| 70 | Spontaneous Breaking of Time-Reversal Symmetry in Strongly Interacting Two-Dimensional Electron<br>Layers in Silicon and Germanium. Physical Review Letters, 2014, 112, 236602. | 7.8  | 17        |
| 71 | Silicon quantum electronics. Reviews of Modern Physics, 2013, 85, 961-1019.                                                                                                     | 45.6 | 892       |
| 72 | New avenues to an old material: controlled nanoscale doping of germanium. Nanoscale, 2013, 5, 2600.                                                                             | 5.6  | 43        |

| #  | Article                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Direct measurement of the spin gaps in a gated GaAs two-dimensional electron gas. Nanoscale<br>Research Letters, 2013, 8, 138.                         | 5.7  | 3         |
| 74 | Transport through a single donor in p-type silicon. Applied Physics Letters, 2013, 103, 043106.                                                        | 3.3  | 17        |
| 75 | A tight-binding study of channel modulation in atomic-scale Si:P nanowires. , 2013, , .                                                                |      | 0         |
| 76 | Atomistic modeling of metallic nanowires in silicon. Nanoscale, 2013, 5, 8666.                                                                         | 5.6  | 28        |
| 77 | Thermal processing of strained silicon-on-insulator for atomically precise silicon device fabrication.<br>Applied Surface Science, 2013, 265, 833-838. | 6.1  | 3         |
| 78 | Epitaxial top-gated atomic-scale silicon wire in a three-dimensional architecture. Nanotechnology, 2013, 24, 045303.                                   | 2.6  | 28        |
| 79 | Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas. Physical Review Letters, 2013, 110, 136801.                         | 7.8  | 30        |
| 80 | Exploring the Limits of N-Type Ultra-Shallow Junction Formation. ACS Nano, 2013, 7, 5499-5505.                                                         | 14.6 | 44        |
| 81 | Spin readout and addressability of phosphorus-donor clusters in silicon. Nature Communications, 2013, 4, 2017.                                         | 12.8 | 100       |
| 82 | Phosphorus Molecules on Ge(001): A Playground for Controlled n-Doping of Germanium at High Densities. ACS Nano, 2013, 7, 11310-11316.                  | 14.6 | 24        |
| 83 | Electronic spectrum of a deterministic single-donor device in silicon. , 2013, , .                                                                     |      | 0         |
| 84 | Origin of noise in two dimensionally doped silicon and germanium. , 2013, , .                                                                          |      | 0         |
| 85 | Electronic structure of phosphorus and arsenicî $'$ -doped germanium. Physical Review B, 2013, 88, .                                                   | 3.2  | 4         |
| 86 | Interplay between quantum confinement and dielectric mismatch for ultrashallow dopants. Physical<br>Review B, 2013, 87, .                              | 3.2  | 18        |
| 87 | Atomic layer doping of strained Ge-on-insulator thin films with high electron densities. Applied Physics Letters, 2013, 102, 151103.                   | 3.3  | 16        |
| 88 | Using Scanning Tunneling Microscopy to Realize Atomic- Scale Silicon Devices. , 2013, , .                                                              |      | 1         |
| 89 | Microscopic four-point-probe resistivity measurements of shallow, high density doping layers in silicon. Applied Physics Letters, 2012, 101, .         | 3.3  | 32        |
| 90 | Full-band study of ultra-thin Si:P nanowires. , 2012, , .                                                                                              |      | 0         |

| #   | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>n</mml:mi></mml:math> -Type Doping of Germanium from Phosphine: Early<br>Stages Resolved at the Atomic Level. Physical Review Letters, 2012, 109, 076101.                                               | 7.8  | 18        |
| 92  | Effective mass theory of monolayer <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mi>δ</mml:mi></mml:math> doping in the high-density limit. Physical Review B,<br>2012, 85, .                                                                            | 3.2  | 24        |
| 93  | Stacking of 2D Electron Gases in Ge Probed at the Atomic Level and Its Correlation to Low-Temperature Magnetotransport. Nano Letters, 2012, 12, 4953-4959.                                                                                                                                          | 9.1  | 17        |
| 94  | Spectroscopy of a deterministic single-donor device in silicon. Proceedings of SPIE, 2012, , .                                                                                                                                                                                                      | 0.8  | 3         |
| 95  | Engineering Independent Electrostatic Control of Atomic-Scale (â^1⁄44 nm) Silicon Double Quantum Dots.<br>Nano Letters, 2012, 12, 4001-4006.                                                                                                                                                        | 9.1  | 31        |
| 96  | Ohm's Law Survives to the Atomic Scale. Science, 2012, 335, 64-67.                                                                                                                                                                                                                                  | 12.6 | 291       |
| 97  | A single-atom transistor. Nature Nanotechnology, 2012, 7, 242-246.                                                                                                                                                                                                                                  | 31.5 | 730       |
| 98  | A Complete Fabrication Route for Atomic-Scale, Donor-Based Devices in Single-Crystal Germanium.<br>Nano Letters, 2011, 11, 2272-2279.                                                                                                                                                               | 9.1  | 60        |
| 99  | Charge Sensing of Precisely Positioned P Donors in Si. Nano Letters, 2011, 11, 4376-4381.                                                                                                                                                                                                           | 9.1  | 43        |
| 100 | Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements. Nanoscale Research Letters, 2011, 6, 538.                                                                                                                              | 5.7  | 9         |
| 101 | Dual-temperature encapsulation of phosphorus in germanium δâ€layers toward ultra-shallow junctions.<br>Journal of Crystal Growth, 2011, 316, 81-84.                                                                                                                                                 | 1.5  | 10        |
| 102 | Phosphorus atomic layer doping of germanium by the stacking of multiple δlayers. Nanotechnology, 2011, 22, 375203.                                                                                                                                                                                  | 2.6  | 26        |
| 103 | Suppression of low-frequency noise in two-dimensional electron gas at degenerately doped<br>Si:P <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>l´</mml:mi></mml:mrow></mml:math> layers. Physical Review B,<br>2011. 83.                    | 3.2  | 16        |
| 104 | Electronic structure of realistically extended atomistically resolved disordered Si:P <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>1´</mml:mi>-doped layers. Physical Review B, 2011, 84, .</mml:math<br>                                            | 3.2  | 44        |
| 105 | First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's<br>functions. Frontiers of Physics in China, 2010, 5, 369-379.                                                                                                                                            | 1.0  | 13        |
| 106 | Optimizing dopant activation in Si:P double <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0014.gif" overflow="scroll"&gt;<mml:mi<br>mathvariant="normal"&gt;δ<mml:mtext>-layers</mml:mtext>. Journal of Crystal<br/>Growth, 2010, 312, 3247-3250.</mml:mi<br></mml:math<br> | 1.5  | 14        |
| 107 | Investigating the surface quality and confinement of Si:P at different growth temperatures. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2010, 42, 1180-1183.                                                                                                                          | 2.7  | 15        |
| 108 | Radio-frequency reflectometry—A fast and sensitive measurement method for two-dimensional<br>systems. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1192-1195.                                                                                                                   | 2.7  | 1         |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Spectroscopy of few-electron single-crystal silicon quantum dots. Nature Nanotechnology, 2010, 5, 502-505.                                                                                                        | 31.5 | 165       |
| 110 | Development of a tunable donor quantum dot in silicon. Applied Physics Letters, 2010, 96, 043116.                                                                                                                 | 3.3  | 13        |
| 111 | Influence of encapsulation temperature on Ge:Pδ-doped layers. Physical Review B, 2009, 80, .                                                                                                                      | 3.2  | 23        |
| 112 | Ultradense phosphorus in germanium delta-doped layers. Applied Physics Letters, 2009, 94, 162106.                                                                                                                 | 3.3  | 45        |
| 113 | Investigating the regrowth surface of Si:P $\hat{I}$ -layers toward vertically stacked three dimensional devices. Applied Physics Letters, 2009, 95, .                                                            | 3.3  | 39        |
| 114 | Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy.<br>Nanotechnology, 2009, 20, 495302.                                                                                     | 2.6  | 28        |
| 115 | Aharonov–Bohm oscillations in a nanoscale dopant ring in silicon. Applied Physics Letters, 2009, 95, .                                                                                                            | 3.3  | 3         |
| 116 | Impact of Si growth rate on coherent electron transport in Si:P delta-doped devices. Applied Physics<br>Letters, 2009, 95, 142104.                                                                                | 3.3  | 11        |
| 117 | Atomic-Scale, All Epitaxial In-Plane Gated Donor Quantum Dot in Silicon. Nano Letters, 2009, 9, 707-710.                                                                                                          | 9.1  | 104       |
| 118 | NANOTECHNOLOGY IN AUSTRALIA. , 2009, , 37-57.                                                                                                                                                                     |      | 0         |
| 119 | Demonstration of gating action in atomically controlled Si:P nanodots defined by scanning probe microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1006-1009.                           | 2.7  | 5         |
| 120 | 0.7 Structure and zero bias anomaly in one-dimensional hole systems. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2008, 40, 1501-1503.                                                               | 2.7  | 0         |
| 121 | Metallic behavior in low-disorder two-dimensional hole systems in the presence of long- and short-range disorder. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1599-1601.                     | 2.7  | 0         |
| 122 | The effect of surface proximity on electron transport through ultra-shallow -doped layers in silicon.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1566-1568.                              | 2.7  | 11        |
| 123 | Using a four-probe scanning tunneling microscope to characterize phosphorus doped ohmic contacts for atomic scale devices in silicon. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2131-2133. | 2.7  | 1         |
| 124 | Geometric suppression of single-particle energy spacings in quantum antidots. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2008, 40, 1633-1636.                                                      | 2.7  | 1         |
| 125 | Screening long-range Coulomb interactions in 2D hole systems using a bilayer heterostructure.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1700-1702.                                      | 2.7  | 1         |
| 126 | Impact of long- and short-range disorder on the metallic behaviour of two-dimensional systems.<br>Nature Physics, 2008, 4, 55-59.                                                                                 | 16.7 | 39        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Probing dopants at the atomic level. Nature Physics, 2008, 4, 165-166.                                                                                                                       | 16.7 | 9         |
| 128 | The 0.7 anomaly in one-dimensional hole quantum wires. Journal of Physics Condensed Matter, 2008, 20, 164205.                                                                                | 1.8  | 10        |
| 129 | Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal. Applied Physics<br>Letters, 2008, 93, 142105.                                                              | 3.3  | 13        |
| 130 | Effect of screening long-range Coulomb interactions on the metallic behavior in two-dimensional hole systems. Physical Review B, 2008, 77, .                                                 | 3.2  | 14        |
| 131 | Electron-electron interactions in highly disordered two-dimensional systems. Physical Review B, 2008, 77, .                                                                                  | 3.2  | 40        |
| 132 | Radio-frequency reflectometry on large gated two-dimensional systems. Review of Scientific<br>Instruments, 2008, 79, 123901.                                                                 | 1.3  | 12        |
| 133 | Ohmic conduction of sub-10nm P-doped silicon nanowires at cryogenic temperatures. Applied Physics<br>Letters, 2008, 92, 052101.                                                              | 3.3  | 12        |
| 134 | Electron heating and huge positive magnetoresistance in an AlGaAsâ^•GaAs high electron mobility transistor structure at high temperatures. Applied Physics Letters, 2008, 92, 152117.        | 3.3  | 6         |
| 135 | 0.7 Structure and Zero Bias Anomaly in Ballistic Hole Quantum Wires. Physical Review Letters, 2008, 100, 016403.                                                                             | 7.8  | 27        |
| 136 | Anticrossing of Spin-Split Subbands in Quasi-One-Dimensional Wires. Physical Review Letters, 2008, 100, 226804.                                                                              | 7.8  | 2         |
| 137 | Kondo Effect from a Tunable Bound State within a Quantum Wire. Physical Review Letters, 2008, 100, 026807.                                                                                   | 7.8  | 57        |
| 138 | Quantum transport in one-dimensional GaAs hole systems. International Journal of Nanotechnology, 2008, 5, 318.                                                                               | 0.2  | 1         |
| 139 | Morphology and electrical conduction of Si:P δ-doped layers on vicinal Si(001). Journal of Applied<br>Physics, 2008, 104, 066104.                                                            | 2.5  | 10        |
| 140 | Surface gate and contact alignment for buried, atomically precise scanning tunneling<br>microscopy–patterned devices. Journal of Vacuum Science & Technology B, 2007, 25, 2562.              | 1.3  | 20        |
| 141 | Decay of long-lived quantum Hall induced currents in 2D electron systems. New Journal of Physics, 2007, 9, 71-71.                                                                            | 2.9  | 8         |
| 142 | Comparison of GaP and PH3 as dopant sources for STM-based device fabrication. Nanotechnology, 2007, 18, 065301.                                                                              | 2.6  | 8         |
| 143 | Scanning tunneling microscope based fabrication of nano- and atomic scale dopant devices in silicon:<br>The crucial step of hydrogen removal. Journal of Applied Physics, 2007, 101, 034305. | 2.5  | 26        |
|     |                                                                                                                                                                                              |      |           |

144 Atomically precise silicon device fabrication. , 2007, , .

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Single hydrogen atoms on the Si(001) surface. Physical Review B, 2007, 76, .                                                                                                                               | 3.2  | 28        |
| 146 | Energy-level pinning and the 0.7 spin state in one dimension: GaAs quantum wires studied using finite-bias spectroscopy. Physical Review B, 2007, 75, .                                                    | 3.2  | 32        |
| 147 | Huge positive magnetoresistance of GaAsâ•AlGaAs high electron mobility transistor structures at high temperatures. Applied Physics Letters, 2007, 90, 252106.                                              | 3.3  | 12        |
| 148 | Structural and electrical characterization of room temperature ultra-high-vacuum compatible SiO2<br>for gating scanning tunneling microscope-patterned devices. Applied Physics Letters, 2007, 91, 222109. | 3.3  | 6         |
| 149 | Use of a scanning electron microscope to pattern large areas of a hydrogen resist for electrical contacts. Journal of Applied Physics, 2007, 102, .                                                        | 2.5  | 8         |
| 150 | Use of low-temperature Hall effect to measure dopant activation: Role of electron-electron interactions. Physical Review B, 2007, 76, .                                                                    | 3.2  | 6         |
| 151 | Electronic properties of atomically abrupt tunnel junctions in silicon. Physical Review B, 2007, 75, .                                                                                                     | 3.2  | 31        |
| 152 | One-dimensional conduction properties of highly phosphorus-doped planar nanowires patterned by scanning probe microscopy. Physical Review B, 2007, 76, .                                                   | 3.2  | 33        |
| 153 | Single P and As dopants in the Si(001) surface. Journal of Chemical Physics, 2007, 127, 184706.                                                                                                            | 3.0  | 8         |
| 154 | Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy.<br>Nanotechnology, 2007, 18, 044023.                                                                                 | 2.6  | 24        |
| 155 | Electrical Characterization of Ordered Si:P Dopant Arrays. IEEE Nanotechnology Magazine, 2007, 6, 213-217.                                                                                                 | 2.0  | 17        |
| 156 | Single Phosphorus Atoms in Si(001):  Doping-Induced Charge Transfer into Isolated Si Dangling Bonds.<br>Journal of Physical Chemistry C, 2007, 111, 6428-6433.                                             | 3.1  | 5         |
| 157 | Doping and STM tip-induced changes to single dangling bonds on Si(001). Surface Science, 2007, 601, 4036-4040.                                                                                             | 1.9  | 10        |
| 158 | Realization of Atomically Controlled Dopant Devices in Silicon. Small, 2007, 3, 563-567.                                                                                                                   | 10.0 | 108       |
| 159 | Thermal dissociation and desorption ofPH3on Si(001): A reinterpretation of spectroscopic data.<br>Physical Review B, 2006, 74, .                                                                           | 3.2  | 57        |
| 160 | Phosphine Dissociation and Diffusion on Si(001) Observed at the Atomic Scale. Journal of Physical Chemistry B, 2006, 110, 3173-3179.                                                                       | 2.6  | 28        |
| 161 | BASIC PROPERTIES OF SILICON SURFACES. , 2006, , 29-66.                                                                                                                                                     |      | 0         |
| 162 | The excitation spectrum of quantum antidots. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 195-198.                                                                                     | 2.7  | 7         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Ballistic transport in one-dimensional bilayer hole systems. Physica E: Low-Dimensional Systems and<br>Nanostructures, 2006, 34, 550-552.                                                              | 2.7 | 2         |
| 164 | Effects of interactions and disorder on the compressibility of two-dimensional electron and hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 240-243.                    | 2.7 | 2         |
| 165 | New interaction effects in quantum point contacts at high magnetic fields. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2006, 34, 588-591.                                                | 2.7 | 6         |
| 166 | Phosphorus and hydrogen atoms on the (001) surface of silicon: A comparative scanning tunnelling microscopy study of surface species with a single dangling bond. Surface Science, 2006, 600, 318-324. | 1.9 | 20        |
| 167 | Zeeman Splitting in Ballistic Hole Quantum Wires. Physical Review Letters, 2006, 97, 026403.                                                                                                           | 7.8 | 85        |
| 168 | Fabrication of induced two-dimensional hole systems on (311)A GaAs. Journal of Applied Physics, 2006, 99, 023707.                                                                                      | 2.5 | 30        |
| 169 | Conductance quantization and the 0.7×2e2â^•h conductance anomaly in one-dimensional hole systems.<br>Applied Physics Letters, 2006, 88, 012107.                                                        | 3.3 | 42        |
| 170 | Thermodynamic Density of States of Two-Dimensional GaAs Systems near the Apparent Metal-Insulator<br>Transition. Physical Review Letters, 2006, 96, 216407.                                            | 7.8 | 50        |
| 171 | Influence of doping density on electronic transport in degenerate Si:Pδ-doped layers. Physical Review B, 2006, 73, .                                                                                   | 3.2 | 62        |
| 172 | Importance of charging in atomic resolution scanning tunneling microscopy: Study of a single phosphorus atom in aSi(001)surface. Physical Review B, 2006, 74, .                                        | 3.2 | 14        |
| 173 | The fabrication of devices in silicon using scanning probe microscopy. , 2005, , .                                                                                                                     |     | Ο         |
| 174 | STM characterization of phosphine adsorption on STM-patterned H:Si(001)surfaces. , 2005, , .                                                                                                           |     | 1         |
| 175 | Fabrication and characterization of a 2D hole system a in novel (311)A GaAs SISFET. Microelectronics<br>Journal, 2005, 36, 327-330.                                                                    | 2.0 | 2         |
| 176 | Evidence for a finite compressibility of a quasi-one-dimensional ballistic channel. Microelectronics<br>Journal, 2005, 36, 331-333.                                                                    | 2.0 | 0         |
| 177 | â€~Mobility gap' of a spin-split GaAs two-dimensional electron gas. Microelectronics Journal, 2005, 36,<br>466-468.                                                                                    | 2.0 | 1         |
| 178 | Induced currents, frozen charges and the quantum Hall effect breakdown. Solid State<br>Communications, 2005, 134, 257-259.                                                                             | 1.9 | 5         |
| 179 | Relevance of phosphorus incorporation and hydrogen removal for Si:P δ-doped layers fabricated using phosphine. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1002-1005.     | 1.8 | 10        |
| 180 | Interaction effects in high-mobility two-dimensional electron and hole systems. Physica Status Solidi<br>(B): Basic Research, 2005, 242, 1204-1208.                                                    | 1.5 | 1         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Towards the Routine Fabrication of P in Si Nanostructures: Understanding P Precursor Molecules on<br>Si(001). Materials Research Society Symposia Proceedings, 2005, 864, 541. | 0.1 | 2         |
| 182 | The use of etched registration markers to make four-terminal electrical contacts to STM-patterned nanostructures. Nanotechnology, 2005, 16, 2446-2449.                         | 2.6 | 26        |
| 183 | Interaction correction to the longitudinal conductivity and Hall resistivity in high-quality two-dimensional GaAs electron and hole systems. Physical Review B, 2005, 72, .    | 3.2 | 10        |
| 184 | Phosphine adsorption and dissociation on the Si(001) surface: Anab initiosurvey of structures.<br>Physical Review B, 2005, 72, .                                               | 3.2 | 44        |
| 185 | Observation of substitutional and interstitial phosphorus on cleanSi(100)â^'(2×1)with scanning tunneling microscopy. Physical Review B, 2005, 72, .                            | 3.2 | 11        |
| 186 | Evolution of the bilayer $\hat{1}_{2}$ = 1 quantum Hall state under charge imbalance. Physical Review B, 2005, 71, .                                                           | 3.2 | 15        |
| 187 | Effective removal of hydrogen resists used to pattern devices in silicon using scanning tunneling microscopy. Applied Physics Letters, 2005, 86, 143116.                       | 3.3 | 11        |
| 188 | Anomalous spin-dependent behavior of one-dimensional subbands. Physical Review B, 2005, 72, .                                                                                  | 3.2 | 15        |
| 189 | Scanning probe microscopy for silicon device fabrication. Molecular Simulation, 2005, 31, 505-515.                                                                             | 2.0 | 50        |
| 190 | Measurements of composite fermion conductivity dependence on carrier density. Journal of Physics<br>Condensed Matter, 2004, 16, 1095-1101.                                     | 1.8 | 1         |
| 191 | Unusual conductance collapse in one-dimensional quantum structures. Journal of Physics Condensed<br>Matter, 2004, 16, L279-L286.                                               | 1.8 | 8         |
| 192 | Measurement of phosphorus segregation in silicon at the atomic scale using scanning tunneling microscopy. Applied Physics Letters, 2004, 85, 1359-1361.                        | 3.3 | 49        |
| 193 | Temperature dependence of the breakdown of the quantum Hall effect studied by induced currents.<br>Physical Review B, 2004, 70, .                                              | 3.2 | 33        |
| 194 | Gradual decrease of conductance of an adiabatic ballistic constriction below2e2â^•h. Physical Review B, 2004, 70, .                                                            | 3.2 | 9         |
| 195 | Phosphine Dissociation on the Si(001) Surface. Physical Review Letters, 2004, 93, 226102.                                                                                      | 7.8 | 65        |
| 196 | Effect of encapsulation temperature on Si:P δ-doped layers. Applied Physics Letters, 2004, 85, 4953-4955.                                                                      | 3.3 | 44        |
| 197 | STM characterization of the Si-P heterodimer. Physical Review B, 2004, 69, .                                                                                                   | 3.2 | 40        |
| 198 | Weak localization in high-quality two-dimensional systems. Physical Review B, 2004, 70, .                                                                                      | 3.2 | 49        |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Stability of the bilayer μ2=1 quantum Hall state under charge imbalance. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2004, 22, 40-43.                                  | 2.7 | 1         |
| 200 | Selective spin-resolved edge-current injection into a quantum antidot. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 168-172.                                     | 2.7 | 0         |
| 201 | Can the conductance step of a single-mode ballistic constriction be lower than 2e2/h?. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2004, 22, 268-271.                  | 2.7 | 0         |
| 202 | 0.7 Analogue structures and exchange interactions in quantum wires. Solid State Communications, 2004, 131, 591-597.                                                                  | 1.9 | 9         |
| 203 | STM imaging of buried P atoms in hydrogen-terminated Si for the fabrication of a Si:P quantum computer. Thin Solid Films, 2004, 464-465, 23-27.                                      | 1.8 | 19        |
| 204 | Upshift of the fractional quantum Hall plateaux: evidence for repulsive scattering for composite fermions. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 135-137. | 2.7 | 0         |
| 205 | Temperature-dependent high-current breakdown of the quantum Hall effect. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2004, 22, 201-204.                                | 2.7 | 1         |
| 206 | Self-organised criticality in the quantum Hall effect. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 210-213.                                                     | 2.7 | 2         |
| 207 | Interactions in high-mobility 2D electron and hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 218-223.                                                | 2.7 | 4         |
| 208 | 0.7 Structure in quantum wires observed at crossings of spin-polarised 1D subbands. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2004, 22, 264-267.                     | 2.7 | 7         |
| 209 | Transport and quantum lifetime dependence on electron density in gated GaAs/AlGaAs<br>heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 312-315.    | 2.7 | 6         |
| 210 | Mobility dependence on carrier density in a dilute GaAs electron gas in an in-plane magnetic field.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 324-327.     | 2.7 | 1         |
| 211 | Kondo-like behaviour as manifestation of many-body interactions around a quantum antidot. Physica<br>E: Low-Dimensional Systems and Nanostructures, 2004, 22, 558-561.               | 2.7 | 0         |
| 212 | Experimental evidence for screening effects from surface states in GaAs/AlGaAs based nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 570-573.       | 2.7 | 3         |
| 213 | Equilibrium magnetization measurements of two-dimensional electron systems. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2004, 22, 741-744.                             | 2.7 | 6         |
| 214 | Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy. Nano Letters, 2004, 4, 1969-1973.                                                                 | 9.1 | 150       |
| 215 | Split-off dimer defects on theSi(001)2×1surface. Physical Review B, 2004, 69, .                                                                                                      | 3.2 | 25        |
| 216 | Fano Factor Reduction on the 0.7 Conductance Structure of a Ballistic One-Dimensional Wire.<br>Physical Review Letters, 2004, 93, 116602.                                            | 7.8 | 75        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Critical issues in the formation of atomic arrays of phosphorus in silicon for the fabrication of a solid-state quantum computer. Surface Science, 2003, 532-535, 678-684.          | 1.9 | 8         |
| 218 | Towards the atomic-scale fabrication of a silicon-based solid state quantum computer. Surface Science, 2003, 532-535, 1209-1218.                                                    | 1.9 | 23        |
| 219 | Ultrafast spin evolution in high-mobility 2DEGs. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 324-328.                                                          | 2.7 | 4         |
| 220 | Spin-dependent transport in a dilute two-dimensional GaAs electron gas in an in-plane magnetic field.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 141-142.  | 2.7 | 3         |
| 221 | STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer. Applied Surface Science, 2003, 212-213, 319-324.                                       | 6.1 | 16        |
| 222 | Progress in silicon-based quantum computing. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2003, 361, 1451-1471.                        | 3.4 | 60        |
| 223 | Selective spin-resolved edge-current injection into a quantum antidot. Physical Review B, 2003, 68, .                                                                               | 3.2 | 10        |
| 224 | Scanning tunneling microscopy imaging of charged defects on clean Si(100)-(2×1). Journal of Vacuum<br>Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1506-1509.    | 2.1 | 14        |
| 225 | Optical imaging of trion diffusion and drift in GaAs quantum wells. Physical Review B, 2003, 68, .                                                                                  | 3.2 | 13        |
| 226 | Atomically Precise Placement of Single Dopants in Si. Physical Review Letters, 2003, 91, 136104.                                                                                    | 7.8 | 334       |
| 227 | Magnetization measurements of high-mobility two-dimensional electron gases. Physical Review B, 2003, 67, .                                                                          | 3.2 | 43        |
| 228 | Interaction Effects at Crossings of Spin-Polarized One-Dimensional Subbands. Physical Review Letters, 2003, 91, 136404.                                                             | 7.8 | 73        |
| 229 | DEVIATION FROM EXACT CONDUCTANCE QUANTIZATION IN A SHORT CLEAN ONE-DIMENSIONAL CHANNEL.<br>International Journal of Nanoscience, 2003, 02, 551-558.                                 | 0.7 | 0         |
| 230 | Challenges in Surface Science for a P-in-Si Quantum Computer — Phosphine Adsorption/Incorporation<br>and Epitaxial Si Encapsulation. Surface Review and Letters, 2003, 10, 415-423. | 1.1 | 2         |
| 231 | Interactions in 2D electron and hole systems in the intermediate and ballistic regimes. Journal of Physics A, 2003, 36, 9249-9262.                                                  | 1.6 | 8         |
| 232 | Kondo Effect in a Quantum Antidot. Physical Review Letters, 2002, 89, 226803.                                                                                                       | 7.8 | 37        |
| 233 | Hole-Hole Interaction Effect in the Conductance of the Two-Dimensional Hole Gas in the Ballistic<br>Regime. Physical Review Letters, 2002, 89, 076406.                              | 7.8 | 86        |
| 234 | Precession and Motional Slowing of Spin Evolution in a High Mobility Two-Dimensional Electron Gas.<br>Physical Review Letters, 2002, 89, 236601.                                    | 7.8 | 110       |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Quantum-dot electron occupancy controlled by a charged scanning probe. Physical Review B, 2002, 66,                                                                                     | 3.2 | 21        |
| 236 | Tuning the electron transport properties of a one-dimensional constriction using hydrostatic pressure. Physical Review B, 2002, 65, .                                                   | 3.2 | 13        |
| 237 | Origin of the Oscillator Strength of the Triplet State of a Trion in a Magnetic Field. Physical Review<br>Letters, 2002, 89, 246805.                                                    | 7.8 | 25        |
| 238 | Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer. Applied Physics Letters, 2002, 81, 3197-3199.                                                 | 3.3 | 92        |
| 239 | Tunneling gap collapse andv=2quantum Hall state in a bilayer electron system. Physical Review B, 2002,<br>66, .                                                                         | 3.2 | 7         |
| 240 | Scanning tunnelling microscope fabrication of arrays of phosphorus atom qubits for a silicon quantum computer. Smart Materials and Structures, 2002, 11, 741-748.                       | 3.5 | 8         |
| 241 | <title>Effects of accidental microconstriction on the quantized conductance in long wires</title> ., 2002, , .                                                                          |     | 2         |
| 242 | lmaging charged defects on clean Si(100)-(2×1) with scanning tunneling microscopy. Journal of Applied Physics, 2002, 92, 820-824.                                                       | 2.5 | 35        |
| 243 | Localisation in Strongly Interacting 2D GaAs Systems. Physica Status Solidi (B): Basic Research, 2002, 230, 81-87.                                                                      | 1.5 | 2         |
| 244 | Fermi-Liquid Behaviour near the Crossover from ?Metal? to ?Insulator? in 2D Systems. Physica Status<br>Solidi (B): Basic Research, 2002, 230, 89-95.                                    | 1.5 | 4         |
| 245 | Dynamic of Spin Triplet and Singlet Trions in a GaAs Quantum Well. Physica Status Solidi A, 2002, 190, 809-812.                                                                         | 1.7 | 1         |
| 246 | Experimental studies of composite fermion conductivity: dependence on carrier density. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 12, 105-108.                     | 2.7 | 1         |
| 247 | Spin-dependent transport in a two-dimensional GaAs electron gas in a parallel magnetic field. Physica<br>E: Low-Dimensional Systems and Nanostructures, 2002, 12, 412-415.              | 2.7 | 0         |
| 248 | Exchange-driven bilayer-to-monolayer charge transfer in an asymmetric double-quantum-well. Physica<br>E: Low-Dimensional Systems and Nanostructures, 2002, 12, 304-306.                 | 2.7 | 2         |
| 249 | Imaging electrostatic microconstrictions in long 1D wires. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 695-698.                                                    | 2.7 | 9         |
| 250 | Fermi-liquid behaviour near the crossover from â€~metal' to â€~insulator' of 2D electron and hole systems.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 595-599. | 2.7 | 0         |
| 251 | Effect of temperature and magnetic field on the 0.7 structure in a ballistic one-dimensional wire.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 708-710.         | 2.7 | 8         |
| 252 | The fate of quantum Hall extended states as B→0 and the possibility of a 2D metal. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 12, 646-649.                         | 2.7 | 3         |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Spin-splitting of Aharonov–Bohm oscillations in an antidot. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 782-786.                                          | 2.7  | 3         |
| 254 | Quantum magneto-transport in two-dimensional GaAs electron gases and SiGe hole gases. Journal of<br>Physics and Chemistry of Solids, 2001, 62, 1789-1796.                      | 4.0  | 3         |
| 255 | Localisation and the metal–insulator transition in two dimensions. Physica B: Condensed Matter, 2001, 296, 21-31.                                                              | 2.7  | 13        |
| 256 | Metallic behaviour and localisation in 2D GaAs hole systems. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 161-166.                                         | 2.7  | 3         |
| 257 | Formation and Recombination Dynamics of Charged Excitons in a GaAs Quantum Well. Physica Status<br>Solidi (B): Basic Research, 2001, 227, 297-306.                             | 1.5  | 10        |
| 258 | Observation of Charge Transport by Negatively Charged Excitons. Science, 2001, 294, 837-839.                                                                                   | 12.6 | 88        |
| 259 | Imaging random telegraph signal sites near a quasi 1D electron system. Journal of Physics Condensed<br>Matter, 2001, 13, L249-L254.                                            | 1.8  | 6         |
| 260 | Coulomb Charging Effects in an Open Quantum Dot Device at Zero Magnetic Field. Japanese Journal of<br>Applied Physics, 2001, 40, 1936-1940.                                    | 1.5  | 1         |
| 261 | Coulomb charging effects in an open quantum dot device. Journal of Physics Condensed Matter, 2001, 13, 9515-9534.                                                              | 1.8  | 16        |
| 262 | Metallic Behavior in Dilute Two-Dimensional Hole Systems. Physical Review Letters, 2001, 87, 126802.                                                                           | 7.8  | 30        |
| 263 | Fermi-Liquid Behavior of the Low-Density 2D Hole Gas in aGaAs/AlGaAsHeterostructure at Large Values ofrs. Physical Review Letters, 2001, 86, 4895-4898.                        | 7.8  | 35        |
| 264 | Electron Density Dependence of the Excitonic Absorption Thresholds of GaAs Quantum Wells. Physica<br>Status Solidi A, 2000, 178, 465-470.                                      | 1.7  | 16        |
| 265 | Current breakdown of the integer and fractional quantum Hall effects detected by torque magnetometry. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 140-143. | 2.7  | 8         |
| 266 | Thermopower of one-dimensional devices – measurement and applications. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2000, 6, 534-537.                             | 2.7  | 5         |
| 267 | Bonding and antibonding states in strongly coupled ballistic one-dimensional wires. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2000, 6, 581-585.                | 2.7  | 2         |
| 268 | Imaging electron and conduction-band-hole trajectories through one and two series constrictions.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 234-237.   | 2.7  | 4         |
| 269 | Evidence for charging effects in an open dot at zero magnetic field. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2000, 6, 418-422.                               | 2.7  | 3         |
| 270 | Detection of Coulomb charging around an antidot. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 495-498.                                                      | 2.7  | 3         |

| #   | Article                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Imaging diffraction-limited electronic collimation from a non-equilibrium one-dimensional ballistic constriction. Journal of Physics Condensed Matter, 2000, 12, L167-L172.             | 1.8  | 25        |
| 272 | One-dimensional probability density observed using scanned gate microscopy. Journal of Physics<br>Condensed Matter, 2000, 12, L735-L740.                                                | 1.8  | 27        |
| 273 | Coulomb blockade of tunneling through compressible rings formed around an antidot: An explanation forh/2eAharonov-Bohm oscillations. Physical Review B, 2000, 62, R4817-R4820.          | 3.2  | 37        |
| 274 | Multilayered gated lateral quantum dot devices. Applied Physics Letters, 2000, 76, 1134-1136.                                                                                           | 3.3  | 14        |
| 275 | Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas.<br>Physical Review B, 2000, 62, 5174-5178.                                               | 3.2  | 49        |
| 276 | Rapid radiative decay of charged excitons. Physical Review B, 2000, 62, R13294-R13297.                                                                                                  | 3.2  | 39        |
| 277 | Spin-dependent transport in a quasiballistic quantum wire. Physical Review B, 2000, 61, 9952-9955.                                                                                      | 3.2  | 51        |
| 278 | Electron correlations in an electron bilayer at finite temperature: Landau damping of the acoustic plasmon. Journal of Physics Condensed Matter, 2000, 12, 439-466.                     | 1.8  | 16        |
| 279 | Weak Localization, Hole-Hole Interactions, and the "Metal―Insulator Transition in Two Dimensions.<br>Physical Review Letters, 2000, 84, 2489-2492.                                      | 7.8  | 96        |
| 280 | Detection of Coulomb Charging around an Antidot in the Quantum Hall Regime. Physical Review<br>Letters, 1999, 83, 160-163.                                                              | 7.8  | 67        |
| 281 | Spin-dependent transport in a clean one-dimensional channel. Physical Review B, 1999, 60, 10687-10690.                                                                                  | 3.2  | 21        |
| 282 | Reentrant Insulator-Metal-Insulator Transition atB=0in a Two-Dimensional Hole Gas. Physical Review<br>Letters, 1999, 82, 1542-1545.                                                     | 7.8  | 60        |
| 283 | Intrinsic coupling mechanisms between two-dimensional electron systems in double quantum well structures. Physical Review B, 1999, 59, 7669-7678.                                       | 3.2  | 9         |
| 284 | Angle-resolved Raman spectroscopy of the collective modes in an electron bilayer. Physical Review B, 1999, 59, 2095-2101.                                                               | 3.2  | 57        |
| 285 | Controlled wave-function mixing in strongly coupled one-dimensional wires. Physical Review B, 1999, 59, 12252-12255.                                                                    | 3.2  | 72        |
| 286 | Real metals, 2D or not 2D?. Nature, 1999, 400, 715-717.                                                                                                                                 | 27.8 | 6         |
| 287 | Very high quality 2DEGS formed without dopant in GaAs/AlGaAs heterostructures. Journal of Crystal<br>Growth, 1999, 201-202, 159-162.                                                    | 1.5  | 2         |
| 288 | Fabrication and transport properties of clean long one-dimensional quantum wires formed in modulation-doped GaAs/AlGaAs heterostructures. Applied Physics Letters, 1999, 75, 2975-2977. | 3.3  | 37        |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Anomalous integer quantum Hall states in coupled double quantum wells and the effect of Landau<br>level broadening. Journal of Physics Condensed Matter, 1999, 11, 3711-3728.        | 1.8 | 0         |
| 290 | Fabrication of high-quality one- and two-dimensional electron gases in undoped GaAs/AlGaAs heterostructures. Applied Physics Letters, 1999, 74, 2328-2330.                           | 3.3 | 54        |
| 291 | Excitons, spin-waves and Skyrmions in the optical spectra of a two dimensional electron gas.<br>Solid-State Electronics, 1998, 42, 1169-1174.                                        | 1.4 | 3         |
| 292 | Electron coupling effects on negatively charged excitons in GaAs double quantum wells. Solid-State<br>Electronics, 1998, 42, 1569-1574.                                              | 1.4 | 1         |
| 293 | Experimental evidence for a metal–insulator transition and geometric effect in a half-filled Landau<br>level. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 78-81. | 2.7 | 0         |
| 294 | Stark effect of negatively and positively charged excitons in semiconductor quantum wells. Physica E:<br>Low-Dimensional Systems and Nanostructures, 1998, 2, 87-92.                 | 2.7 | 3         |
| 295 | Raman scattering study of the plasmon modes in bilayer systems. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 834-838.                                             | 2.7 | 0         |
| 296 | Multiple subband crossing in a one-dimensional hole gas with enhanced g-factors. Physica B:<br>Condensed Matter, 1998, 249-251, 166-170.                                             | 2.7 | 1         |
| 297 | Non-equilibrium transport along an edge of variable slope in the fractional quantum Hall regime.<br>Physica B: Condensed Matter, 1998, 249-251, 405-409.                             | 2.7 | 9         |
| 298 | Magneto-optical study of excitonic states in 2DEGs near filling factor ν=1. Physica B: Condensed<br>Matter, 1998, 249-251, 538-543.                                                  | 2.7 | 6         |
| 299 | Skyrmion–hole excitations at μ2=1 studied by photoluminescence spectroscopy. Physica B: Condensed<br>Matter, 1998, 249-251, 544-548.                                                 | 2.7 | 10        |
| 300 | Charged excitons under applied electric and magnetic fields. Physica B: Condensed Matter, 1998, 249-251, 584-588.                                                                    | 2.7 | 0         |
| 301 | Metal–insulator transition at B=0 in an ultra-low density two-dimensional hole gas. Physica B:<br>Condensed Matter, 1998, 249-251, 705-709.                                          | 2.7 | 19        |
| 302 | Many-body interactions, the quantum Hall effect, and insulating phases in bilayer two-dimensional<br>hole-gas systems. Physica B: Condensed Matter, 1998, 249-251, 819-823.          | 2.7 | 9         |
| 303 | A study of the relative strengths of spin-pseudospin phases in a strongly coupled double quantum well system. Physica B: Condensed Matter, 1998, 256-258, 130-135.                   | 2.7 | 0         |
| 304 | Probing the transition from insulating to metallic behaviour using bi-layer electron systems. Physica<br>B: Condensed Matter, 1998, 256-258, 417-423.                                | 2.7 | 0         |
| 305 | Magnetization of an incompressible two-dimensional electron gas. Physica B: Condensed Matter, 1998, 256-258, 16-22.                                                                  | 2.7 | 3         |
| 306 | Temperature-dependent Landau damping of the acoustic plasmon in a bilayer system. Physical Review B,<br>1998, 57, R2065-R2068.                                                       | 3.2 | 34        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Interaction effects in a one-dimensional constriction. Physical Review B, 1998, 58, 4846-4852.                                                                                                                               | 3.2 | 221       |
| 308 | Thermometer for the 2D Electron Gas using 1D Thermopower. Physical Review Letters, 1998, 81, 3491-3494.                                                                                                                      | 7.8 | 81        |
| 309 | Experimental Evidence for Coulomb Charging Effects in an Open Quantum Dot at Zero Magnetic Field.<br>Physical Review Letters, 1998, 81, 3507-3510.                                                                           | 7.8 | 50        |
| 310 | Excitonic recombination processes in spin-polarized two-dimensional electron gases. Physical Review B, 1998, 58, R4227-R4230.                                                                                                | 3.2 | 27        |
| 311 | Metal-Insulator Transition atB=0in a Dilute Two Dimensional GaAs-AlGaAs Hole Gas. Physical Review<br>Letters, 1998, 80, 1292-1295.                                                                                           | 7.8 | 233       |
| 312 | Nonlinear transport in a single-mode one-dimensional electron gas. The Philosophical Magazine:<br>Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties,<br>1998, 77, 1213-1218. | 0.6 | 20        |
| 313 | Effect of finite quantum-well width on the compressibility of a two-dimensional electron gas.<br>Physical Review B, 1997, 55, 6715-6718.                                                                                     | 3.2 | 11        |
| 314 | Magnetization Instability in a Two-Dimensional System. Physical Review Letters, 1997, 79, 4449-4452.                                                                                                                         | 7.8 | 51        |
| 315 | Resonant Rayleigh scattering by excitonic states laterally confined in the interface roughnessof<br>GaAs/AlxGa1â^xAs single quantum wells. Physical Review B, 1997, 55, 13752-13760.                                         | 3.2 | 30        |
| 316 | Fabrication of high mobilityin situback-gated (311)A hole gas heterojunctions. Applied Physics Letters, 1997, 70, 2750-2752.                                                                                                 | 3.3 | 27        |
| 317 | Magnetization and Energy Gaps of a High-Mobility 2D Electron Gas in the Quantum Limit. Physical<br>Review Letters, 1997, 79, 3238-3241.                                                                                      | 7.8 | 96        |
| 318 | Negatively charged excitons in coupled double quantum wells. Physical Review B, 1997, 55, 1318-1321.                                                                                                                         | 3.2 | 36        |
| 319 | The physics and fabrication of in situ back-gated (311)A hole gas heterojunctions. Microelectronics<br>Journal, 1997, 28, 795-801.                                                                                           | 2.0 | 1         |
| 320 | Experimental evidence of a metal-insulator transition in a half-filled Landau level. Solid State<br>Communications, 1997, 102, 327-330.                                                                                      | 1.9 | 3         |
| 321 | Resonant Rayleigh Scattering by Confined Two-Dimensional Excitonic States. Physica Status Solidi (B):<br>Basic Research, 1997, 204, 45-48.                                                                                   | 1.5 | 0         |
| 322 | The Aharonov-Bohm effect in the fractional quantum Hall regime. Surface Science, 1996, 361-362, 17-21.                                                                                                                       | 1.9 | 30        |
| 323 | Measurements of a composite fermion split-gate. Surface Science, 1996, 361-362, 71-74.                                                                                                                                       | 1.9 | 5         |
| 324 | Magneto-optical spectroscopy of neutral and negatively charged excitons in GaAs quantum wells.<br>Surface Science, 1996, 361-362, 451-455.                                                                                   | 1.9 | 1         |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Detection of the oscillation of the Fermi energy of a 2DEG. Surface Science, 1996, 361-362, 608-612.                                                                               | 1.9  | 2         |
| 326 | Possible Spin Polarization in a One-Dimensional Electron Gas. Physical Review Letters, 1996, 77, 135-138.                                                                          | 7.8  | 657       |
| 327 | Evolution of GaAs quantum well excitons with excess electron density and magnetic field. Solid-State<br>Electronics, 1996, 40, 275-280.                                            | 1.4  | 2         |
| 328 | Compressibility studies of double electron and double hole gas systems. Applied Physics Letters, 1996, 68, 3323-3325.                                                              | 3.3  | 20        |
| 329 | Transport through an array of small ohmic contacts alloyed to the twoâ€dimensional electron gas of a<br>GaAs/AlGaAs heterostructure. Applied Physics Letters, 1996, 68, 3434-3436. | 3.3  | 5         |
| 330 | On the acoustoelectric current in a one-dimensional channel. Journal of Physics Condensed Matter, 1996, 8, L337-L343.                                                              | 1.8  | 63        |
| 331 | Ballistic composite fermions in semiconductor nanostructures. Physical Review B, 1996, 53, 9602-9605.                                                                              | 3.2  | 4         |
| 332 | Negative transconductance in parallel conducting systems controlled by device geometry and magnetic field. Semiconductor Science and Technology, 1996, 11, 483-488.                | 2.0  | 4         |
| 333 | Comparison of optical and transport measurements of electron densities in quantum wells.<br>Semiconductor Science and Technology, 1996, 11, 890-896.                               | 2.0  | 23        |
| 334 | Integer quantum Hall states in coupled double electron gas systems at mismatched carrier densities.<br>Journal of Physics Condensed Matter, 1996, 8, L311-L318.                    | 1.8  | 6         |
| 335 | The growth of high mobility heterostructures on (311)B GaAs. Microelectronics Journal, 1995, 26, 897-902.                                                                          | 2.0  | 2         |
| 336 | Reflection of edge states in the fractional quantum Hall regime. Solid State Communications, 1995, 96, 327-331.                                                                    | 1.9  | 3         |
| 337 | Quenching of excitonic optical transitions by excess electrons in GaAs quantum wells. Physical<br>Review B, 1995, 51, 18049-18052.                                                 | 3.2  | 110       |
| 338 | Effect of spatial dispersion on acoustoelectric current in a high-mobility two-dimensional electron gas. Physical Review B, 1995, 51, 14770-14773.                                 | 3.2  | 49        |
| 339 | Spin-triplet negatively charged excitons in GaAs quantum wells. Physical Review B, 1995, 52, 7841-7844.                                                                            | 3.2  | 163       |
| 340 | Magneto-optical probe of the two-dimensional hole-system low-temperature ground states. Physical<br>Review B, 1995, 51, 7357-7360.                                                 | 3.2  | 2         |
| 341 | Influence of excess electrons and magnetic fields on Mott-Wannier excitons in GaAs quantum wells.<br>Advances in Physics, 1995, 44, 47-72.                                         | 14.4 | 59        |
| 342 | Experimental study of the acoustoelectric effects in GaAs-AlGaAs heterostructures. Journal of<br>Physics Condensed Matter, 1995, 7, 7675-7685.                                     | 1.8  | 31        |

| #   | Article                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | The propagation of low-frequency edge excitations in a two-dimensional electron gas in the IQHE regime. Journal of Physics Condensed Matter, 1995, 7, L435-L443.  | 1.8 | 7         |
| 344 | Ballistic transport in oneâ€dimensional constrictions formed in deep twoâ€dimensional electron gases.<br>Applied Physics Letters, 1995, 67, 109-111.              | 3.3 | 77        |
| 345 | Anisotropic magnetotransport in two-dimensional electron gases on (311)B GaAs substrates. Journal of Physics Condensed Matter, 1994, 6, 6131-6138.                | 1.8 | 10        |
| 346 | Phase coherence, interference, and conductance quantization in a confined two-dimensional hole gas. Physical Review B, 1994, 49, 5101-5104.                       | 3.2 | 25        |
| 347 | Electron focusing in two-dimensional electron gases grown on (311)BGaAs substrates. Physical<br>Review B, 1994, 50, 17636-17638.                                  | 3.2 | 2         |
| 348 | Experimental investigation of the damping of low-frequency edge magnetoplasmons in<br>GaAs-AlxGa1â~'xAs heterostructures. Physical Review B, 1994, 50, 1582-1587. | 3.2 | 17        |
| 349 | Temperature limits for ballistic quantization in a GaAs/AlGaAs one-dimensional constriction. Journal of Physics Condensed Matter, 1993, 5, L559-L564.             | 1.8 | 8         |