Stefan P Sobolowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The European climate under a 2 °C global warming. Environmental Research Letters, 2014, 9, 034006.	2.2	292
2	The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 2013, 41, 2555-2575.	1.7	290
3	Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.	1.4	227
4	A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics, 2020, 55, 3-34.	1.7	176
5	Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geoscientific Model Development, 2015, 8, 603-618.	1.3	175
6	Climate Impacts in Europe Under +1.5°C Global Warming. Earth's Future, 2018, 6, 264-285.	2.4	130
7	Toward a multi-faceted conception of co-production of climate services. Climate Services, 2019, 13, 42-50.	1.0	119
8	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Climate Dynamics, 2021, 57, 275-302.	1.7	114
9	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Climate Dynamics, 2021, 56, 3581-3602.	1.7	101
10	Landâ€atmosphere coupling in EURO ORDEX evaluation experiments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 79-103.	1.2	84
11	Evaluating the present annual water budget of a Himalayan headwater river basin using a highâ€resolution atmosphereâ€hydrology model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4786-4807.	1.2	51
12	Importance of Late Fall ENSO Teleconnection in the Euro-Atlantic Sector. Bulletin of the American Meteorological Society, 2018, 99, 1337-1343.	1.7	50
13	Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX). Journal of Geophysical Research D: Atmospheres, 2018, 123, 2537-2554.	1.2	46
14	Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophysical Research Letters, 2012, 39, .	1.5	41
15	Modeled Climate State and Dynamic Responses to Anomalous North American Snow Cover. Journal of Climate, 2010, 23, 785-799.	1.2	36
16	Investigating Possible Arctic–Midlatitude Teleconnections in a Linear Framework. Journal of Climate, 2016, 29, 7329-7343.	1.2	36
17	Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change, 2019, 182, 103005.	1.6	32
18	Evaluation of present and future North American Regional Climate Change Assessment Program (NARCCAP) regional climate simulations over the southeast United States. Journal of Geophysical Research, 2012, 117, .	3.3	31

STEFAN P SOBOLOWSKI

#	Article	IF	CITATIONS
19	Impact of emissions andÂ+2°C climate change upon future ozone and nitrogen dioxide over Europe. Atmospheric Environment, 2016, 142, 271-285.	1.9	31
20	Lagged relationships between North American snow mass and atmospheric teleconnection indices. International Journal of Climatology, 2007, 27, 221-231.	1.5	30
21	Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation. Weather and Climate Dynamics, 2020, 1, 261-275.	1.2	28
22	Trials, Errors, and Improvements in Coproduction of Climate Services. Bulletin of the American Meteorological Society, 2019, 100, 1419-1428.	1.7	23
23	Extreme wind projections over Europe from the Euro-CORDEX regional climate models. Weather and Climate Extremes, 2021, 33, 100363.	1.6	23
24	Simulation of Diurnal Rainfall Variability over the Maritime Continent with a High-Resolution Regional Climate Model. Journal of the Meteorological Society of Japan, 2016, 94A, 89-103.	0.7	19
25	Particulate matter air pollution in Europe in aÂ+2°C warming world. Atmospheric Environment, 2017, 154, 129-140.	1.9	19
26	Asian droughts in the last millennium: a search for robust impacts of Pacific Ocean surface temperature variabilities. Climate Dynamics, 2018, 50, 4671-4689.	1.7	19
27	Identifying added value in high-resolution climate simulations over Scandinavia. Tellus, Series A: Dynamic Meteorology and Oceanography, 2015, 67, 24941.	0.8	17
28	Northern Hemisphere winter climate variability: Response to North American snow cover anomalies and orography. Geophysical Research Letters, 2007, 34, .	1.5	14
29	Improving the Reliability and Added Value of Dynamical Downscaling via Correction of Large cale Errors: A Norwegian Perspective. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,875-11,888.	1.2	14
30	A physically based precipitation separation algorithm for convectionâ€permitting models over complex topography. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 748-761.	1.0	14
31	The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain. Hydrology and Earth System Sciences, 2020, 24, 771-791.	1.9	14
32	Internal variability versus multiâ€physics uncertainty in a regional climate model. International Journal of Climatology, 2021, 41, E656.	1.5	13
33	Modeling Irrigated Area to Increase Water, Energy, and Food Security in Semiarid India. Weather, Climate, and Society, 2010, 2, 255-270.	0.5	12
34	The impact of meteorological forcings on gas phase air pollutants over Europe. Atmospheric Environment, 2015, 119, 240-257.	1.9	12
35	Designing and evaluating regional climate simulations for high latitude land use land cover change studies. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1853437.	0.8	12
36	The Change in the ENSO Teleconnection under a Low Global Warming Scenario and the Uncertainty due to Internal Variability. Journal of Climate, 2020, 33, 4871-4889.	1.2	12

STEFAN P SOBOLOWSKI

#	Article	IF	CITATIONS
37	Impact of Quasiâ€Idealized Future Land Cover Scenarios at High Latitudes in Complex Terrain. Earth's Future, 2021, 9, e2020EF001838.	2.4	12
38	Physical processes driving intensification of future precipitation in the mid- to high latitudes. Environmental Research Letters, 2021, 16, 034051.	2.2	10
39	Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?. Geoscientific Model Development, 2022, 15, 3387-3404.	1.3	10
40	Assessment of downscaled current and future projections of diurnal rainfall patterns for the Himalaya. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,533-12,545.	1.2	9
41	Intraseasonal Persistence of European Surface Temperatures. Journal of Climate, 2015, 28, 5365-5374.	1.2	9
42	Mass balance and hydrological modeling of the HardangerjÃkulen ice cap in south-central Norway. Hydrology and Earth System Sciences, 2021, 25, 4275-4297.	1.9	9
43	Quantifying the role of land–atmosphere feedbacks in mediating nearâ€surface temperature persistence. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1620-1631.	1.0	8
44	North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Science Advances, 2021, 7, .	4.7	8
45	Resampling of ENSO teleconnections: accounting for cold-season evolution reduces uncertainty in the North Atlantic. Weather and Climate Dynamics, 2021, 2, 759-776.	1.2	8
46	Largeâ€scale regional model biases in the extratropical North Atlantic storm track and impacts on downstream precipitation. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2718-2732.	1.0	7
47	Investigating the Linear and Nonlinear Stationary Wave Response to Anomalous North American Snow Cover. Journals of the Atmospheric Sciences, 2011, 68, 904-917.	0.6	5
48	How long can we keep doing this? Sustainability as a strictly temporal concept. Journal of Environmental Studies and Sciences, 2017, 7, 274-287.	0.9	3
49	Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX). IOP Conference Series: Earth and Environmental Science, 2019, 231, 012003.	0.2	3
50	European Air Quality Simulations in the Context of IMPACT2C, Focus on Aerosol Concentrations. Springer Proceedings in Complexity, 2016, , 213-217.	0.2	0
51	Convective processes in high resolution models: Impact of the lead time of the simulation. Acta De Las Jornadas CientÃficas De La Asociación Meteorológica Española, 2018, 1, .	0.0	0
52	An Evolving Framework for Advancing Climate Services in Norway. Eos, 2018, 99, .	0.1	0