Rodrigo O M Alves De Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469262/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 2015, 33, 372-393.	11.7	176
2	A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, 12040-12063.	3.3	171
3	Levoglucosan: a promising platform molecule?. Green Chemistry, 2020, 22, 5859-5880.	9.0	109
4	The Three omponent Biginelli Reaction: A Combined Experimental and Theoretical Mechanistic Investigation. Chemistry - A European Journal, 2009, 15, 9799-9804.	3.3	103
5	Continuous Flow Synthesis of α-Halo Ketones: Essential Building Blocks of Antiretroviral Agents. Journal of Organic Chemistry, 2014, 79, 1555-1562.	3.2	92
6	Towards a continuous flow environment for lipase-catalyzed reactions. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 1-9.	1.8	66
7	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	9.0	62
8	A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitorAtazanavir. Organic and Biomolecular Chemistry, 2013, 11, 6806-6813.	2.8	56
9	Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrasonics Sonochemistry, 2010, 17, 4-6.	8.2	55
10	Synthetic Strategies toward SGLT2 Inhibitors. Organic Process Research and Development, 2018, 22, 467-488.	2.7	52
11	The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Advances, 2015, 5, 48506-48515.	3.6	51
12	Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1131-1174.	0.8	46
13	The Multicomponent Hantzsch Reaction: Comprehensive Mass Spectrometry Monitoring Using Chargeâ€Tagged Reagents. Chemistry - A European Journal, 2014, 20, 12808-12816.	3.3	45
14	Combination of the Suzuki–Miyaura Cross oupling Reaction with Engineered Transaminases. Chemistry - A European Journal, 2018, 24, 16009-16013.	3.3	45
15	Antimycobacterial and Anti-Inflammatory Activities of Substituted Chalcones Focusing on an Anti-Tuberculosis Dual Treatment Approach. Molecules, 2015, 20, 8072-8093.	3.8	44
16	Michael additions of primary and secondary amines to acrylonitrile catalyzed by lipases. Tetrahedron Letters, 2009, 50, 2017-2018.	1.4	42
17	The Morita–Baylis–Hillman reaction in aqueous–organic solvent system. Tetrahedron Letters, 2008, 49, 5902-5905.	1.4	41
18	Lipase-Catalyzed Monostearin Synthesis under Continuous Flow Conditions. Organic Process Research and Development, 2012, 16, 1098-1101.	2.7	41

#	Article	IF	CITATIONS
19	New approaches on the analyses of thermolabile coffee diterpenes by gas chromatography and its relationship with cup quality. Talanta, 2015, 139, 159-166.	5.5	39
20	Process Intensified Flow Synthesis of 1 <i>H</i> -4-Substituted Imidazoles: Toward the Continuous Production of Daclatasvir. ACS Sustainable Chemistry and Engineering, 2015, 3, 3445-3453.	6.7	37
21	Enzymeâ€Đecorated Covalent Organic Frameworks as Nanoporous Platforms for Heterogeneous Biocatalysis. Chemistry - A European Journal, 2019, 25, 15863-15870.	3.3	37
22	Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. ChemPlusChem, 2020, 85, 2051-2066.	2.8	37
23	Cellulose as an efficient matrix for lipase and transaminase immobilization. RSC Advances, 2016, 6, 6665-6671.	3.6	35
24	Continuous flow valorization of fatty acid waste using silica-immobilized lipases. Green Chemistry, 2013, 15, 518.	9.0	32
25	Consecutive lipase immobilization and glycerol carbonate production under continuous-flow conditions. Catalysis Science and Technology, 2016, 6, 4743-4748.	4.1	31
26	Enhanced Productivity in Glycerol Carbonate Synthesis under Continuous Flow Conditions: Combination of Immobilized Lipases from Porcine Pancreas and <i>Candida antarctica</i> (CALB) on Epoxy Resins. ACS Omega, 2019, 4, 860-869.	3.5	30
27	Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation – The use of experimental design as a tool for variables evaluation. Ultrasonics Sonochemistry, 2012, 19, 232-236.	8.2	28
28	Process intensification for tertiary amine catalyzed glycerol carbonate production: translating microwave irradiation to a continuous-flow process. RSC Advances, 2015, 5, 20945-20950.	3.6	28
29	Lipase-catalyzed esterification of steric hindered fructose derivative by continuous flow and batch conditions. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 37-42.	1.8	27
30	Synthesis of Mepivacaine and Its Analogues by a Continuousâ€Flow Tandem Hydrogenation/Reductive Amination Strategy. European Journal of Organic Chemistry, 2017, 2017, 6511-6517.	2.4	27
31	Diacylglycerol synthesis by lipase-catalyzed partial hydrolysis of palm oil under microwave irradiation and continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 36-39.	1.8	23
32	Ethyl acetate as an acyl donor in the continuous flow kinetic resolution of (±)-1-phenylethylamine catalyzed by lipases. Organic and Biomolecular Chemistry, 2013, 11, 3332.	2.8	23
33	Kinetic resolution of a precursor for myo-inositol phosphates under continuous flow conditions. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 139-143.	1.8	22
34	Continuous flow dynamic kinetic resolution of rac-1-phenylethanol using a single packed-bed containing immobilized CAL-B lipase and VOSO ₄ as racemization catalysts. Reaction Chemistry and Engineering, 2017, 2, 375-381.	3.7	22
35	Active Pharmaceutical Ingredients for Antiretroviral Treatment in Low- and Middle-Income Countries: A Survey. Antiviral Therapy, 2014, 19, 15-29.	1.0	21
36	Biocatalytic Cascade Reaction for the Asymmetric Synthesis of L―and Dâ€Homoalanine. ChemCatChem, 2019, 11, 407-411.	3.7	21

RODRIGO O M ALVES DE SOUZA

#	Article	IF	CITATIONS
37	Flow processing as a tool for API production in developing economies. Journal of Flow Chemistry, 2017, 7, 146-150.	1.9	20
38	Thermal effect on the microwave assisted biodiesel synthesis catalyzed by lipases. Journal of the Brazilian Chemical Society, 2011, 22, 1993-1998.	0.6	19
39	Continuous-Flow Chemo and Enzymatic Synthesis of Monoterpenic Esters with Integrated Purification. Molecular Catalysis, 2018, 453, 39-46.	2.0	19
40	Oxidation of Benzene Catalyzed by 2,2′-Bipyridine and 1,10-Phenantroline Cu(II) Complexes. Catalysis Letters, 2009, 129, 79-84.	2.6	18
41	Ammonium formate as a green hydrogen source for clean semi-continuous enzymatic dynamic kinetic resolution of (+/â^')-î±-methylbenzylamine. RSC Advances, 2014, 4, 13620-13625.	3.6	18
42	Lipase immobilization towards improved productivity on kinetic resolutions by a continuous-flow process. RSC Advances, 2015, 5, 102409-102415.	3.6	17
43	Continuousâ€Flow Synthesis of (<i>R</i>)â€Propylene Carbonate: An Important Intermediate in the Synthesis of Tenofovir. European Journal of Organic Chemistry, 2018, 2018, 2931-2938.	2.4	17
44	Kinetic Modeling of Solvent-Free Lipase-Catalyzed Partial Hydrolysis of Palm Oil. Applied Biochemistry and Biotechnology, 2012, 168, 1121-1142.	2.9	16
45	Continuous-flow synthesis of dimethyl fumarate: a powerful small molecule for the treatment of psoriasis and multiple sclerosis. RSC Advances, 2020, 10, 2490-2494.	3.6	16
46	Lipase-catalyzed synthesis of secondary glucose esters under continuous flow conditions. European Journal of Lipid Science and Technology, 2013, 115, 464-467.	1.5	15
47	Continuous flow whole cell bioreduction of fluorinated acetophenone. Tetrahedron, 2014, 70, 3239-3242.	1.9	15
48	Sporopollenin as an efficient green support for covalent immobilization of a lipase. Catalysis Science and Technology, 2015, 5, 3130-3136.	4.1	15
49	Continuous-flow protocol for the synthesis of enantiomerically pure intermediates of anti epilepsy and anti tuberculosis active pharmaceutical ingredients. Organic and Biomolecular Chemistry, 2019, 17, 1552-1557.	2.8	15
50	Biocatalyzed Acetins Production under Continuous-Flow Conditions: Valorization of Glycerol Derived from Biodiesel Industry. Journal of Flow Chemistry, 2013, 3, 41-45.	1.9	13
51	Lipase immobilized in microemulsion based organogels (MBGs) as an efficient catalyst for continuous-flow esterification of protected fructose. RSC Advances, 2015, 5, 37287-37291.	3.6	13
52	An efficient green protocol for the preparation of acetoacetamides and application of the methodology to a one-pot synthesis of Biginelli dihydropyrimidines. Expansion of dihydropyrimidine topological chemical space. RSC Advances, 2015, 5, 70915-70928.	3.6	13
53	Novel nanoparticle/enzyme biosilicified nanohybrids for advanced heterogeneously catalyzed protocols. Catalysis Science and Technology, 2015, 5, 1840-1846.	4.1	13
54	Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization. Catalysts, 2021, 11, 936.	3.5	13

#	Article	IF	CITATIONS
55	¹³ C NMR quantification of mono and diacylglycerols obtained through the solventâ€free lipaseâ€catalyzed esterification of saturated fatty acids. Magnetic Resonance in Chemistry, 2012, 50, 424-428.	1.9	12
56	Continuous-Flow Sequential Schotten–Baumann Carbamoylation and Acetate Hydrolysis in the Synthesis of Capecitabine. Organic Process Research and Development, 2019, 23, 2516-2520.	2.7	12
57	Lipases of Endophytic Fungi Stemphylium lycopersici and Sordaria sp.: Application in the synthesis of solketal derived Monoacylglycerols. Enzyme and Microbial Technology, 2020, 142, 109664.	3.2	12
58	Process Intensification for Obtaining a Cannabidiol Intermediate by Photo-oxygenation of Limonene under Continuous-Flow Conditions. Organic Process Research and Development, 2020, 24, 2017-2024.	2.7	12
59	Highly enantioselective bioreduction of ethyl 3-oxohexanoate. Tetrahedron Letters, 2011, 52, 6127-6129.	1.4	11
60	TBCA mediated microwave-assisted Hofmann rearrangement. Tetrahedron Letters, 2011, 52, 1639-1640.	1.4	11
61	On the mechanism of the Dakin–West reaction. Organic and Biomolecular Chemistry, 2012, 10, 9013.	2.8	11
62	Highly enantioselective bioreduction of 4-bromoacetophenone. Tetrahedron: Asymmetry, 2011, 22, 1763-1766.	1.8	10
63	Three-Step Chemo Enzymatic Continuous-Flow Cascade Synthesis of 1-Monoacylglycerol. Journal of Flow Chemistry, 2013, 3, 122-126.	1.9	10
64	Nanoencapsulated Lecitase Ultra and Thermomyces lanuginosus Lipase, a Comparative Structural Study. Langmuir, 2016, 32, 6746-6756.	3.5	10
65	Lipase-catalysed esters synthesis of cafestol and kahweol. Food Chemistry, 2018, 259, 226-233.	8.2	10
66	Studies on the dynamic resolution of Crizotinib intermediate. Bioorganic and Medicinal Chemistry, 2018, 26, 1333-1337.	3.0	10
67	PEG600-carboxylates as acylating agents for the continuous enzymatic kinetic resolution of alcohols and amines. Molecular Catalysis, 2018, 459, 89-96.	2.0	10
68	Two step continuous-flow synthesis of benzocaine. Journal of Flow Chemistry, 2020, 10, 563-569.	1.9	10
69	Synthesis and characterization of a magnetic hybrid catalyst containing lipase and palladium and its application on the dynamic kinetic resolution of amines. Molecular Catalysis, 2020, 493, 111106.	2.0	9
70	Cannabidiol Discovery and Synthesis—a Targetâ€Oriented Analysis in Drug Production Processes. Chemistry - A European Journal, 2021, 27, 5577-5600.	3.3	9
71	Regioselective Acylation of Levoglucosan Catalyzed by Candida Antarctica (CaLB) Lipase Immobilized on Epoxy Resin. Sustainability, 2019, 11, 6044.	3.2	8
72	Copper-Free Sonogashira Reaction Using Gold Nanoparticles Supported on Ce2O3, Nb2O5 and SiO2 under Microwave Irradiation. Synlett, 2008, 2008, 1777-1780.	1.8	7

RODRIGO O M ALVES DE SOUZA

#	Article	IF	CITATIONS
73	Lipase-catalyzed acylation of levoglucosan in continuous flow: antibacterial and biosurfactant studies. RSC Advances, 2022, 12, 3027-3035.	3.6	7
74	Continuous-flow CvFAP photodecarboxylation of palmitic acid under environmentally friendly conditions. Molecular Catalysis, 2022, 528, 112469.	2.0	7
75	Whole Cells in Enantioselective Reduction oftert-Butyl Acetoacetate. Synthetic Communications, 2013, 43, 1611-1618.	2.1	6
76	Studies on the laccases catalyzed oxidation of norbelladine like acetamides. Molecular Catalysis, 2020, 485, 110788.	2.0	4
77	Recent Advances in Applied Biocatalysis and Biotechnology. Biotechnology Advances, 2015, 33, 371.	11.7	3
78	Methodology Development and Validation of Amphotericin B Stability by HPLC‑DAD. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
79	Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones. International Journal of Molecular Sciences, 2022, 23, 777.	4.1	2
80	Allenediazonium ions and their protonation chemistry: a DFT study. Organic and Biomolecular Chemistry, 2006, 4, 4444.	2.8	1
81	Frontispiece: Cannabidiol Discovery and Synthesis—a Targetâ€Oriented Analysis in Drug Production Processes. Chemistry - A European Journal, 2021, 27, .	3.3	1
82	Continuous flow synthesis of the lamivudine precursor L-Menthyl Glyoxylate. Journal of Flow Chemistry, 2022, 12, 59-69.	1.9	1
83	Frontispiece: A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry - A European Journal, 2017, 23, .	3.3	0