Mario Vallejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5469084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restricting feeding to dark phase fails to entrain circadian activity and energy expenditure oscillations in Pitx3-mutant Aphakia mice. Cell Reports, 2022, 38, 110241.	6.4	2
2	The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice. Diabetologia, 2022, 65, 490-505.	6.3	9
3	Neonatal overfeeding during lactation rapidly and permanently misaligns the hepatic circadian rhythm and programmes adult NAFLD. Molecular Metabolism, 2021, 45, 101162.	6.5	12
4	Increasing breast milk betaine modulates <i>Akkermansia</i> abundance in mammalian neonates and improves long-term metabolic health. Science Translational Medicine, 2021, 13, .	12.4	28
5	BACE2 suppression in mice aggravates the adverse metabolic consequences of an obesogenic diet. Molecular Metabolism, 2021, 53, 101251.	6.5	4
6	The Value of Mouse Models of Rare Diseases: A Spanish Experience. Frontiers in Genetics, 2020, 11, 583932.	2.3	12
7	Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice. Movement Disorders, 2020, 35, 1636-1648.	3.9	42
8	rMSIproc: an R package for mass spectrometry imaging data processing. Bioinformatics, 2020, 36, 3618-3619.	4.1	21
9	Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30335-30343.	7.1	61
10	Systemic Glucose Administration Alters Water Diffusion and Microvascular Blood Flow in Mouse Hypothalamic Nuclei – An fMRI Study. Frontiers in Neuroscience, 2019, 13, 921.	2.8	6
11	Hypomorphic Expression of Pitx3 Disrupts Circadian Clocks and Prevents Metabolic Entrainment of Energy Expenditure. Cell Reports, 2019, 29, 3678-3692.e4.	6.4	20
12	Epigenetic programming at the <i>Mogat1</i> locus may link neonatal overnutrition with longâ€ŧerm hepatic steatosis and insulin resistance. FASEB Journal, 2018, 32, 6025-6037.	0.5	19
13	Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Scientific Reports, 2017, 7, 389.	3.3	10
14	Role of muscle IL-6 in gender-specific metabolism in mice. PLoS ONE, 2017, 12, e0173675.	2.5	29
15	Developmental mechanisms of stripe patterns in rodents. Nature, 2016, 539, 518-523.	27.8	101
16	Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells. Diabetologia, 2016, 59, 766-775.	6.3	6
17	Activation of DREAM (Downstream Regulatory Element Antagonistic Modulator), a Calcium-Binding Protein, Reduces L-DOPA-Induced Dyskinesias in Mice. Biological Psychiatry, 2015, 77, 95-105.	1.3	58
18	Pdx1 and USF transcription factors co-ordinately regulate Alx3 gene expression in pancreatic β-cells. Biochemical Journal, 2014, 463, 287-296.	3.7	2

MARIO VALLEJO

#	Article	IF	CITATIONS
19	Differential configurations involving binding of USF transcription factors and Twist1 regulate <i>Alx3</i> promoter activity in mesenchymal and pancreatic cells. Biochemical Journal, 2013, 450, 199-208.	3.7	12
20	Essential role of protein tyrosine phosphatase 1B in obesityâ€induced inflammation and peripheral insulin resistance during aging. Aging Cell, 2012, 11, 284-296.	6.7	78
21	Regulation of somatostatin gene expression by brain derived neurotrophic factor in fetal rat cerebrocortical cells. Brain Research, 2011, 1375, 28-40.	2.2	18
22	Alx3-deficient mice exhibit decreased insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia, 2011, 54, 403-414.	6.3	10
23	Thearistaless-like homeobox protein Alx3 as an etiopathogenic factor for diabetes mellitus. Islets, 2011, 3, 66-68.	1.8	2
24	Activityâ€dependent somatostatin gene expression is regulated by cAMPâ€dependent protein kinase and Ca ²⁺ â€calmodulin kinase pathways. Journal of Neuroscience Research, 2010, 88, 825-836.	2.9	11
25	Alx3-deficient mice exhibit folic acid-resistant craniofacial midline and neural tube closure defects. Developmental Biology, 2010, 344, 869-880.	2.0	38
26	PACAP signaling to DREAM: A cAMP-Dependent Pathway that Regulates Cortical Astrogliogenesis. Molecular Neurobiology, 2009, 39, 90-100.	4.0	25
27	Pituitary adenylate cyclase-activating polypeptide stimulates glial fibrillary acidic protein gene expression in cortical precursor cells by activating Ras and Rap1. Molecular and Cellular Neurosciences, 2008, 39, 291-301.	2.2	12
28	DREAM Mediates cAMP-Dependent, Ca2+-Induced Stimulation of GFAP Gene Expression and Regulates Cortical Astrogliogenesis. Journal of Neuroscience, 2008, 28, 6703-6713.	3.6	45
29	Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. Journal of Neurochemistry, 2006, 97, 1057-1070.	3.9	72
30	The Homeoprotein Alx3 Expressed in Pancreatic β-Cells Regulates Insulin Gene Transcription by Interacting with the Basic Helix-Loop-Helix Protein E47. Molecular Endocrinology, 2006, 20, 2876-2889.	3.7	15
31	The Homeoprotein Alx3 Contains Discrete Functional Domains and Exhibits Cell-specific and Selective Monomeric Binding and Transactivation. Journal of Biological Chemistry, 2004, 279, 38062-38071.	3.4	17
32	Somatostatin Gene Structure and Regulation. , 2004, , 1-16.		2
33	Pituitary Adenylate Cyclase-Activating Polypeptide Induces Astrocyte Differentiation of Precursor Cells from Developing Cerebral Cortex. Molecular and Cellular Neurosciences, 2002, 21, 671-683.	2.2	48
34	Multipotential Nestin-Positive Stem Cells Isolated From Adult Pancreatic Islets Differentiate Ex Vivo Into Pancreatic Endocrine, Exocrine, and Hepatic Phenotypes. Diabetes, 2001, 50, 521-533.	0.6	760
35	The Importance of Autosomal Genes in Kallmann Syndrome: Genotype-Phenotype Correlations and Neuroendocrine Characteristics. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1532-1538.	3.6	144
36	Prevalence, Phenotypic Spectrum, and Modes of Inheritance of Gonadotropin-Releasing Hormone Receptor Mutations in Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1580-1588.	3.6	174

MARIO VALLEJO

#	Article	IF	CITATIONS
37	Pancreatic Homeodomain Transcription Factor IDX1/IPF1 Expressed in Developing Brain Regulates Somatostatin Gene Transcription in Embryonic Neural Cells. Journal of Biological Chemistry, 2000, 275, 19106-19114.	3.4	37
38	Astroglial Differentiation of Cortical Precursor Cells Triggered by Activation of the cAMP-Dependent Signaling Pathway. Journal of Neuroscience, 1999, 19, 9004-9015.	3.6	58
39	The Pancreatic Homeodomain Transcription Factor IDX1/IPF1 Is Expressed in Neural Cells during Brain Development. Endocrinology, 1999, 140, 3857-3860.	2.8	42
40	Experimental evidence does not support use of the "no-touch―isolation technique in colorectal cancer. Diseases of the Colon and Rectum, 1999, 42, 1449-1454.	1.3	26
41	Detection of genomically-tagged cancer cells in different tissues at different stages of tumor development: lack of correlation with the formation of metastasis. Cancer Letters, 1999, 140, 11-20.	7.2	8
42	CHOP Enhancement of Gene Transcription by Interactions with Jun/Fos AP-1 Complex Proteins. Molecular and Cellular Biology, 1999, 19, 7589-7599.	2.3	127
43	The Pancreatic Homeodomain Transcription Factor IDX1/IPF1 Is Expressed in Neural Cells during Brain Development. Endocrinology, 1999, 140, 3857-3857.	2.8	14
44	Differential Regulation of Basal and Cyclic Adenosine 3′,5′-Monophosphate-Induced Somatostatin Gene Transcription in Neural Cells by DNA Control Elements That Bind Homeodomain Proteins. Molecular Endocrinology, 1998, 12, 1280-1293.	3.7	9
45	Genetic Heterogeneity Evidenced by Low Incidence of KAL-1 Gene Mutations in Sporadic Cases of Gonadotropin-Releasing Hormone Deficiency. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 213-217.	3.6	83
46	Network-Level Changes in Expression of Inducible Fos–Jun Proteins in the Striatum during Chronic Cocaine Treatment and Withdrawal. Neuron, 1996, 17, 147-156.	8.1	256
47	D1-class dopamine receptors influence cocaine-induced persistent expression of Fos-related proteins in striatum. NeuroReport, 1996, 8, 1-5.	1.2	55
48	cAMP-Dependent Regulation of Gene Transcription by cAMP Response Element-Binding Protein and cAMP Response Element Modulator. Vitamins and Hormones, 1995, 51, 1-57.	1.7	84
49	Impaired cyclic AMP-dependent phosphorylation renders CREB a repressor of C/EBP-induced transcription of the somatostatin gene in an insulinoma cell line. Molecular and Cellular Biology, 1995, 15, 415-424.	2.3	41
50	Repression of somatostatin gene transcription mediated by two promoter silencer elements. Molecular and Cellular Endocrinology, 1995, 113, 61-72.	3.2	15
51	Transcriptional Control of Gene Expression by cAMP-Response Element Binding Proteins. Journal of Neuroendocrinology, 1994, 6, 587-596.	2.6	40
52	C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4679-4683.	7.1	251
53	The Pancreatic Islet-Specific Glucagon G3 Transcription Factors Recognize Control Elements in the Rat Somatostatin and Insulin-I Genes. Molecular Endocrinology, 1991, 5, 1457-1466.	3.7	56
54	Factors That Determine Cell-Specific Gene Expression in Pancreatic Endocrine Tumor Cells. Hormone Research, 1989, 32, 61-66.	1.8	5

MARIO VALLEJO

#	Article	IF	CITATION
55	The metabolism and functions of inositol pentakisphosphate and inositol hexakisphosphate. Biochemical Society Transactions, 1989, 17, 3-5.	3.4	28
56	Vasopressin stimulates inositol phospholipid metabolism in rat medulla oblangata in vivo. Brain Research, 1988, 450, 398-402.	2.2	19
57	Molecular Mechanisms of Phospholipid Signaling Pathways in Mammalian Nerve Cells. Cold Spring Harbor Symposia on Quantitative Biology, 1988, 53, 435-445.	1.1	6
58	Evidence for a functional relationship between noradrenaline and neurohypophyseal peptides in the brainstem of rats. Brain Research, 1987, 422, 295-302.	2.2	17
59	Neonatal Administration of a Specific Neuropeptide Y Antiserum Alters the Vasopressin Response to Haemorrhage and the Hypothalamic Content of Noradrenaline in Rats. Neuroendocrinology, 1987, 45, 507-509.	2.5	12
60	Occurrence and extracellular actions of inositol pentakis- and hexakisphosphate in mammalian brain. Nature, 1987, 330, 656-658.	27.8	199
61	Pressor effect of centrally administered neuropeptide Y in rats: Role of sympathetic nervous system and vasopressin. Life Sciences. 1986. 38. 1859-1866.	4.3	50