
Hardy Hagena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468830/publications.pdf Version: 2024-02-01

ΗΛΡΟΥ ΗΛΟΕΝΙΛ

#	ARTICLE	IF	CITATIONS
1	β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cerebral Cortex, 2016, 26, 1349-1364.	1.6	131
2	Learning-Facilitated Synaptic Plasticity at CA3 Mossy Fiber and Commissural-Associational Synapses Reveals Different Roles in Information Processing. Cerebral Cortex, 2011, 21, 2442-2449.	1.6	74
3	The serotonergic 5-HT4 receptor: A unique modulator of hippocampal synaptic information processing and cognition. Neurobiology of Learning and Memory, 2017, 138, 145-153.	1.0	72
4	Learning-facilitated long-term depression and long-term potentiation at mossy fiber—CA3 synapses requires activation of β-adrenergic receptors. Frontiers in Integrative Neuroscience, 2012, 6, 23.	1.0	41
5	Frequency Facilitation at Mossy Fiber-CA3 Synapses of Freely Behaving Rats Contributes to the Induction of Persistent LTD via an Adenosine-A1 Receptor-Regulated Mechanism. Cerebral Cortex, 2010, 20, 1121-1130.	1.6	32
6	Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning. Frontiers in Synaptic Neuroscience, 2016, 8, 31.	1.3	27
7	mGlu5 Acts As a Switch for Opposing Forms of Synaptic Plasticity at Mossy Fiber–CA3 and Commissural Associational–CA3 Synapses. Journal of Neuroscience, 2015, 35, 4999-5006.	1.7	22
8	The 5â€hydroxytryptamine ₄ receptor enables differentiation of informational content and encoding in the hippocampus. Hippocampus, 2016, 26, 875-891.	0.9	22
9	Differentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo. Frontiers in Integrative Neuroscience, 2013, 7, 10.	1.0	17
10	Preferential frequencyâ€dependent induction of synaptic depression by the lateral perforant path and of synaptic potentiation by the medial perforant path inputs to the dentate gyrus. Hippocampus, 2021, 31, 957-981.	0.9	8
11	mGlu5: A Metabotropic Glutamate Receptor at the Hub of Hippocampal Information Processing, Persistent Synaptic Plasticity, and Long-Term Memory. Receptors, 2017, , 79-101.	0.2	3
12	Lifelong changes of neurotransmitter receptor expression and debilitation of hippocampal synaptic plasticity following early postnatal blindness. Scientific Reports, 2022, 12, .	1.6	2
13	Cover Image, Volume 31, Issue 9. Hippocampus, 2021, 31, C1.	0.9	0