Maurizio Sasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The State of the Art of Smart Energy Communities: A Systematic Review of Strengths and Limits. Energies, 2022, 15, 3462.	3.1	28
2	Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid. Sustainability, 2021, 13, 2137.	3.2	24
3	Gas Engine-Driven Heat Pumps for Small-Scale Applications: State-of-the-Art and Future Perspectives. Energies, 2021, 14, 4845.	3.1	7
4	Exergoeconomic Optimization of Polymeric Heat Exchangers for Geothermal Direct Applications. Energies, 2021, 14, 6994.	3.1	4
5	Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System. Energies, 2020, 13, 2545.	3.1	22
6	Modelling of Polymeric Shell and Tube Heat Exchangers for Low-Medium Temperature Geothermal Applications. Energies, 2020, 13, 2737.	3.1	11
7	Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. European Spine Journal, 2017, 26, 764-770.	2.2	77
8	Analysis of a Hybrid Solar-Assisted Trigeneration System. Energies, 2016, 9, 705.	3.1	23
9	Dynamic simulation of a solar heating and cooling system for an office building located in Southern Italy. Applied Thermal Engineering, 2016, 103, 377-390.	6.0	50
10	Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. Medical Engineering and Physics, 2016, 38, 506-509.	1.7	37
11	Microcogeneration in buildings with low energy demand in load sharing application. Energy Conversion and Management, 2015, 100, 78-89.	9.2	29
12	Dynamic simulations of hybrid energy systems in load sharing application. Applied Thermal Engineering, 2015, 78, 315-325.	6.0	38
13	Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies. Applied Energy, 2015, 138, 533-545.	10.1	67
14	Integration between electric vehicle charging and micro-cogeneration system. Energy Conversion and Management, 2015, 98, 115-126.	9.2	32
15	Modelling of a rotary desiccant wheel: Numerical validation of a Variable Properties Model. Applied Thermal Engineering, 2015, 78, 640-648.	6.0	21
16	Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types. Energies, 2014, 7, 6741-6764.	3.1	21
17	Thermo-Economic Analysis of a Solar Heating and Cooling System With Desiccant-Based Air Handling Unit by Means of Dynamic Simulations. , 2014, , .		1
18	Dynamic performance assessment of a micro-trigeneration system with a desiccant-based air handling unit in Southern Italy climatic conditions. Energy Conversion and Management, 2014, 80, 188-201.	9.2	53

MAURIZIO SASSO

#	Article	IF	CITATIONS
19	Calibration and validation of a thermal energy storage model: Influence on simulation results. Applied Thermal Engineering, 2014, 67, 190-200.	6.0	38
20	Combined cooling, heating and power for small urban districts: AnÂltalian case-study. Applied Thermal Engineering, 2014, 71, 705-713.	6.0	30
21	Load sharing with a local thermal network fed by a microcogenerator: Thermo-economic optimization by means of dynamic simulations. Applied Thermal Engineering, 2014, 71, 628-635.	6.0	26
22	A Review on Microcogeneration National Testing Procedures. Energy Procedia, 2014, 45, 1372-1381.	1.8	6
23	Exergetic analysis of a desiccant cooling system: searching for performance improvement opportunities. International Journal of Energy Research, 2014, 38, 714-727.	4.5	21
24	Residential microcogenerators for multifamily houses. , 2013, , .		1
25	Effect of rotational speed on the performances of a desiccant wheel. Applied Energy, 2013, 104, 268-275.	10.1	76
26	Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities, 2013, 35, 270-283.	5.6	83
27	Experimental analysis on the dehumidification and thermal performance of a desiccant wheel. Applied Energy, 2012, 92, 563-572.	10.1	128
28	Experimental validation of constant efficiency models for the subsystems of an unconventional desiccant-based Air Handling Unit and investigation of its performance. Applied Thermal Engineering, 2012, 33-34, 100-108.	6.0	47
29	Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances. Applied Energy, 2011, 88, 1354-1365.	10.1	75
30	Experimental analysis of microcogenerators based on different prime movers. Energy and Buildings, 2011, 43, 796-804.	6.7	66
31	Experimental investigation to optimise a desiccant HVAC system coupled to a small size cogenerator. Applied Thermal Engineering, 2011, 31, 506-512.	6.0	58
32	Desiccant HVAC system driven by a micro-CHP: Experimental analysis. Energy and Buildings, 2010, 42, 2028-2035.	6.7	62
33	Experimental Analysis of Small Scale Cogenerators Based on Natural Gas Fired Reciprocating Internal Combustion Engine. , 2010, , .		2
34	Assessment of micro-cogeneration potential for domestic trigeneration. International Journal of Environmental Technology and Management, 2007, 7, 147.	0.2	17
35	Miniaturization of Energy Conversion Systems: Energetic Analysis. , 2005, , .		1

36 3-E Analysis of a Heat Pump Driven by a Micro-Cogenerator. , 2005, , .

3

#	Article	IF	CITATIONS
37	A metrological analysis of the in-situ evaluation of the performance of a gas engine-driven heat pump. Measurement: Journal of the International Measurement Confederation, 1995, 16, 209-217.	5.0	9