
Judith C Madden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/546866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of <i>In Silico</i> Tools as Alternatives to Animal Testing: Principles, Resources and Applications. ATLA Alternatives To Laboratory Animals, 2020, 48, 146-172.	0.7	100
2	Students' response to traditional and computerâ€assisted formative feedback: A comparative case study. British Journal of Educational Technology, 2008, 39, 486-500.	3.9	85
3	Pharmaceuticals in the environment: Good practice in predicting acute ecotoxicological effects. Toxicology Letters, 2009, 185, 85-101.	0.4	82
4	Formation of Categories from Structureâ^'Activity Relationships To Allow Read-Across for Risk Assessment: Toxicity of α,β-Unsaturated Carbonyl Compounds. Chemical Research in Toxicology, 2008, 21, 2300-2312.	1.7	70
5	Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Archives of Toxicology, 2020, 94, 1497-1510.	1.9	65
6	Development and analysis of an adverse outcome pathway network for human neurotoxicity. Archives of Toxicology, 2019, 93, 2759-2772.	1.9	61
7	Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130583.	1.8	56
8	In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR. Frontiers in Pharmacology, 2019, 10, 561.	1.6	56
9	In silico resources to assist in the development and evaluation of physiologically-based kinetic models. Computational Toxicology, 2019, 11, 33-49.	1.8	45
10	Development of an <i>in Silico</i> Profiler for Mitochondrial Toxicity. Chemical Research in Toxicology, 2015, 28, 1891-1902.	1.7	41
11	Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6. Chemosphere, 2015, 139, 146-154.	4.2	38
12	Adverse Outcome Pathway (AOP) Informed Modeling of Aquatic Toxicology: QSARs, Read-Across, and Interspecies Verification of Modes of Action. Environmental Science & Technology, 2016, 50, 3995-4007.	4.6	38
13	Structure-based methods for the prediction of drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 545-557.	1.5	37
14	Linking existing inÂvitro dermal absorption data to physicochemical properties: Contribution to the design of a weight-of-evidence approach for the safety evaluation of cosmetic ingredients with low dermal bioavailability. Regulatory Toxicology and Pharmacology, 2016, 76, 74-78.	1.3	29
15	Assessment and Reproducibility of Quantitative Structure–Activity Relationship Models by the Nonexpert. Journal of Chemical Information and Modeling, 2018, 58, 673-682.	2.5	29
16	Strategies for the optimisation of in vivo experiments in accordance with the 3Rs philosophy. Regulatory Toxicology and Pharmacology, 2012, 63, 140-154.	1.3	27
17	<i>In Silico</i> Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects. Toxicological Research, 2017, 33, 173-182.	1.1	26
18	Using In Silico Tools in a Weight of Evidence Approach to Aid Toxicological Assessment. Molecular Informatics, 2010, 29, 97-110.	1.4	25

Judith C Madden

#	Article	IF	CITATIONS
19	Application of in silico and in vitro methods in the development of adverse outcome pathway constructs in wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130584.	1.8	25
20	Towards a Fuzzy Expert System on Toxicological Data Quality Assessment. Molecular Informatics, 2013, 32, 65-78.	1.4	24
21	Development of computational models for the prediction of the toxicity of nanomaterials. Perspectives in Science, 2015, 3, 27-29.	0.6	22
22	In Silico Approaches for Predicting Adme Properties. Challenges and Advances in Computational Chemistry and Physics, 2010, , 283-304.	0.6	21
23	Unlocking the potential of in silico chemical safety assessment – A report on a cross-sector symposium on current opportunities and future challenges. Computational Toxicology, 2019, 10, 38-43.	1.8	20
24	A Systematic Review of Published Physiologically-based Kinetic Models and an Assessment of their Chemical Space Coverage. ATLA Alternatives To Laboratory Animals, 2021, 49, 197-208.	0.7	20
25	A review of in silico toxicology approaches to support the safety assessment of cosmetics-related materials. Computational Toxicology, 2022, 21, 100213.	1.8	20
26	Key read across framework components and biology based improvements. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 853, 503172.	0.9	19
27	Ensuring confidence in predictions: A scheme to assess the scientific validity of in silico models. Advanced Drug Delivery Reviews, 2015, 86, 101-111.	6.6	17
28	Development of a Fragment-Based in Silico Profiler for Michael Addition Thiol Reactivity. Chemical Research in Toxicology, 2016, 29, 1073-1081.	1.7	17
29	Assessment of the predictive capacity of a physiologically based kinetic model using a read-across approach. Computational Toxicology, 2021, 18, 100159.	1.8	16
30	Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Computational Toxicology, 2022, 21, 100206.	1.8	15
31	Investigation of Critical Body Residues and Modes of Toxic Action Based on Injection and Aquatic Exposure in Fish. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	14
32	Development of an In Silico Profiler for Respiratory Sensitisation. ATLA Alternatives To Laboratory Animals, 2014, 42, 367-375.	0.7	13
33	Methods for assigning confidence to toxicity data with multiple values — Identifying experimental outliers. Science of the Total Environment, 2014, 482-483, 358-365.	3.9	13
34	Advances in the prediction of gastrointestinal absorption: Quantitative Structure-Activity Relationship (QSAR) modelling of PAMPA permeability. Computational Toxicology, 2019, 10, 51-59.	1.8	12
35	Data Quality in the Human and Environmental Health Sciences: Using Statistical Confidence Scoring to Improve QSAR/QSPR Modeling. Journal of Chemical Information and Modeling, 2015, 55, 1739-1746.	2.5	11
36	Turbocharging Matched Molecular Pair Analysis: Optimizing the Identification and Analysis of Pairs. Journal of Chemical Information and Modeling, 2017, 57, 2424-2436.	2.5	11

Judith C Madden

#	Article	IF	CITATIONS
37	Predicting protein–ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chemical Science, 2019, 10, 2218-2227.	3.7	11
38	Determination of "fitness-for-purpose―of quantitative structure-activity relationship (QSAR) models to predict (eco-)toxicological endpoints for regulatory use. Regulatory Toxicology and Pharmacology, 2021, 123, 104956.	1.3	9
39	Validation of a Fragment-Based Profiler for Thiol Reactivity for the Prediction of Toxicity: Skin Sensitization and <i>Tetrahymena pyriformis</i> . Chemical Research in Toxicology, 2017, 30, 604-613.	1.7	6
40	A critical review of adverse effects to the kidney: mechanisms, data sources, and <i>in silico</i> tools to assist prediction. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1225-1253.	1.5	6
41	Robustness of an Immobilized Artificial Membrane High-Performance Liquid Chromatography Method for the Determination of Lipophilicity. Journal of Chemical & Engineering Data, 2012, 57, 3696-3700.	1.0	4
42	A matter of trust: Learning lessons about causality will make qAOPs credible. Computational Toxicology, 2022, 21, 100205.	1.8	4
43	A mechanistic model to study the kinetics and toxicity of salicylic acid in the kidney of four virtual individuals. Computational Toxicology, 2021, 19, 100172.	1.8	3
44	Pharmacokinetic Tools and Applications. Methods in Molecular Biology, 2022, 2425, 57-83.	0.4	3
45	A computational investigation of the reactivity of electrophilic toxicants. Toxicology Letters, 2009, 189, S259.	0.4	1
46	Supporting data-mining, read-across and chemical space analysis for toxicity data gap filling using the COSMOS database. Toxicology Letters, 2017, 280, S285.	0.4	1
47	Editorial. ATLA Alternatives To Laboratory Animals, 2020, 48, 139-139.	0.7	1
48	Development of Baseline Quantitative Structure-Activity Relationships (QSARs) for the Effects of Active Pharmaceutical Ingredients (APIs) to Aquatic Species. Methods in Pharmacology and Toxicology, 2020, , 331-356.	0.1	1
49	Editorial. ATLA Alternatives To Laboratory Animals, 2020, 48, 95-96.	0.7	Ο
50	Editorial. ATLA Alternatives To Laboratory Animals, 2021, 49, 61-62.	0.7	0
51	Editorial. ATLA Alternatives To Laboratory Animals, 2021, 49, 3-4.	0.7	Ο
52	Editorial. ATLA Alternatives To Laboratory Animals, 2021, 49, 115-116.	0.7	0
53	Editorial. ATLA Alternatives To Laboratory Animals, 2021, 49, 163-164.	0.7	0
54	Editorial. ATLA Alternatives To Laboratory Animals, 2022, 50, 3-4.	0.7	0

4

#	Article	IF	CITATIONS
55	Editorial. ATLA Alternatives To Laboratory Animals, 2022, , 026119292210970.	0.7	0