Woong-Kyung Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468304/publications.pdf

Version: 2024-02-01

32 papers 2,158 citations

304701 22 h-index 395678 33 g-index

34 all docs 34 docs citations

34 times ranked

3045 citing authors

#	Article	IF	Citations
1	The ICOS–ICOSL pathway tunes thymic selection. Immunology and Cell Biology, 2022, 100, 205-217.	2.3	1
2	ICOS-Deficient Regulatory T Cells Can Prevent Spontaneous Autoimmunity but Are Impaired in Controlling Acute Inflammation. Journal of Immunology, 2022, 209, 301-309.	0.8	2
3	Hippo Signal Transduction Mechanisms in T Cell Immunity. Immune Network, 2020, 20, e36.	3.6	6
4	Inducible Tâ€cell coâ€stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunological Reviews, 2019, 291, 91-103.	6.0	37
5	Hippo Pathway Kinase Mst1 Is Required for Long-Lived Humoral Immunity. Journal of Immunology, 2019, 202, 69-78.	0.8	21
6	ICOS Signaling Controls Induction and Maintenance of Collagen-Induced Arthritis. Journal of Immunology, 2018, 200, 3067-3076.	0.8	20
7	Inducible T-Cell Co-Stimulator Impacts Chronic Graft-Versus-Host Disease by Regulating Both Pathogenic and Regulatory T Cells. Frontiers in Immunology, 2018, 9, 1461.	4.8	19
8	Synergistic effects of host B7-H4 deficiency and gemcitabine treatment on tumor regression and anti-tumor T cell immunity in a mouse model. Cancer Immunology, Immunotherapy, 2017, 66, 491-502.	4.2	7
9	The TLR4–TRIF pathway can protect against the development of experimental allergic asthma. Immunology, 2017, 152, 138-149.	4.4	25
10	Inducible costimulator (ICOS) potentiates TCR-induced calcium flux by augmenting PLCÎ ³ 1 activation and actin remodeling. Molecular Immunology, 2016, 79, 38-46.	2.2	22
11	Life of T Follicular Helper Cells. Molecules and Cells, 2015, 38, 195-201.	2.6	22
12	B7-H4 Expression by Nonhematopoietic Cells in the Tumor Microenvironment Promotes Antitumor Immunity. Cancer Immunology Research, 2015, 3, 184-195.	3.4	36
13	The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy. Immune Network, 2014, 14, 265.	3.6	78
14	Miz-1 regulates translation of <i>Trp53</i> via ribosomal protein L22 in cells undergoing V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5411-9.	7.1	30
15	Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Molecular Immunology, 2014, 59, 46-54.	2.2	35
16	CD4 T Cells Require ICOS-Mediated PI3K Signaling to Increase T-Bet Expression in the Setting of Anti-CTLA-4 Therapy. Cancer Immunology Research, 2014, 2, 167-176.	3.4	39
17	Phosphatidylinositol 3-Kinase–Independent Signaling Pathways Contribute to ICOS-Mediated T Cell Costimulation in Acute Graft-Versus-Host Disease in Mice. Journal of Immunology, 2013, 191, 200-207.	0.8	19
18	Host B7-H4 Regulates Antitumor T Cell Responses through Inhibition of Myeloid-Derived Suppressor Cells in a 4T1 Tumor Transplantation Model. Journal of Immunology, 2013, 190, 6651-6661.	0.8	22

#	Article	IF	CITATIONS
19	Anti-Chlamydial Th17 Responses Are Controlled by the Inducible Costimulator Partially through Phosphoinositide 3-Kinase Signaling. PLoS ONE, 2012, 7, e52657.	2.5	28
20	Roles of CD28, CTLA4, and Inducible Costimulator in Acute Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2011, 17, 962-969.	2.0	41
21	Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Research, 2011, 21, 1564-1577.	12.0	27
22	Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20371-20376.	7.1	202
23	Generation and Characterization of B7-H4/B7S1/B7x-Deficient Mice. Molecular and Cellular Biology, 2006, 26, 6403-6411.	2.3	72
24	Survivin Loss in Thymocytes Triggers p53-mediated Growth Arrest and p53-independent Cell Death. Journal of Experimental Medicine, 2004, 199, 399-410.	8.5	118
25	The Inducible Costimulator Plays the Major Costimulatory Role in Humoral Immune Responses in the Absence of CD28. Journal of Immunology, 2004, 172, 5917-5923.	0.8	56
26	The B7 family member B7-H3 preferentially down-regulates T helper type 1–mediated immune responses. Nature Immunology, 2003, 4, 899-906.	14.5	479
27	Generation and Characterization of Smac/DIABLO-Deficient Mice. Molecular and Cellular Biology, 2002, 22, 3509-3517.	2.3	163
28	Tumor Necrosis Factor Receptor–Associated Factor (Traf)2 Represses the T Helper Cell Type 2 Response through Interaction with Nfat-Interacting Protein (Nip45). Journal of Experimental Medicine, 2001, 194, 89-98.	8.5	33
29	Interaction of murine MHC class I molecules with tapasin and TAP enhances peptide loading and involves the heavy chain alpha3 domain. Journal of Immunology, 1999, 162, 1530-40.	0.8	67
30	Peptide presentation by MHC class I molecules. Trends in Cell Biology, 1996, 6, 267-273.	7.9	27
31	MHC class I molecules form ternary complexes with calnexin and TAP and undergo peptide-regulated interaction with TAP via their extracellular domains Journal of Experimental Medicine, 1996, 184, 337-348.	8.5	97
32	Interaction of MHC class I molecules with the transporter associated with antigen processing. Science, 1994, 264, 1322-1326.	12.6	305