
Jean-François Lamonier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid treated Ce modified birnessite–type MnO2 for ozone decomposition at low temperature: Effect of nitrogen containing co-pollutants and water. Applied Surface Science, 2022, 571, 151240.	6.1	8
2	VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catalysis Today, 2022, 405-406, 212-220.	4.4	17
3	Effect of non-thermal plasma in the activation and regeneration of 13X zeolite for enhanced VOC elimination by cycled storage and discharge process. Journal of Cleaner Production, 2022, 364, 132687.	9.3	6
4	Feature Papers to Celebrate "Environmental Catalysisâ€â€"Trends & Outlook. Catalysts, 2022, 12, 720.	3.5	0
5	Regeneration of Hopcalite used for the adsorption plasma catalytic removal of toluene by non-thermal plasma. Journal of Hazardous Materials, 2021, 402, 123877.	12.4	15
6	Preferential dissolution of copper from Cu-Mn oxides in strong acid medium: Effect of the starting binary oxide to get new efficient copper doped MnO2 catalysts in toluene oxidation. Applied Surface Science, 2021, 537, 147993.	6.1	19
7	Top 10 Cited Papers in the Section "Environmental Catalysis― Catalysts, 2021, 11, 80.	3.5	0
8	La1-x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: The role of oxygen species on the catalytic mechanism. Applied Catalysis B: Environmental, 2021, 287, 119955.	20.2	42
9	Modified Red Mud Catalyst for Volatile Organic Compounds Oxidation. Catalysts, 2021, 11, 838.	3.5	9
10	Adsorption Followed by Plasma Assisted Catalytic Conversion of Toluene into CO2 on Hopcalite in an Air Stream. Catalysts, 2021, 11, 845.	3.5	4
11	Post-Plasma Catalysis for Trichloroethylene Abatement with Ce-Doped Birnessite Downstream DC Corona Discharge Reactor. Catalysts, 2021, 11, 946.	3.5	1
12	Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. Journal of Hazardous Materials, 2020, 383, 121139.	12.4	285
13	MnO _x â€loaded Mesoporous Silica for the Catalytic Oxidation of Formaldehyde. Effect of the Melt Infiltration Conditions on the Activity – Stability Behavior. ChemCatChem, 2020, 12, 1664-1675.	3.7	6
14	Cuâ^'Mn Hydroxyapatite Materials for Toluene Total Oxidation. ChemCatChem, 2020, 12, 550-560.	3.7	9
15	Flash Catalytic Pyrolysis of Polyethylene over (Alumino)silicate Materials. ChemCatChem, 2020, 12, 1109-1116.	3.7	17
16	Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts, 2020, 10, 761.	3.5	7
17	Formaldehyde Total Oxidation on Manganese-Doped Hydroxyapatite: The Effect of Mn Content. Catalysts, 2020, 10, 1422.	3.5	9
18	Acid Washing of MnOxâ€5BAâ€15 Composites as an Efficient Way to Improve Catalytic Properties in HCHO Total Oxidation. ChemNanoMat, 2020, 6, 1237-1244.	2.8	3

Jean-François Lamonier

#	Article	IF	CITATIONS
19	Reactive Grinding synthesis of La(Sr,Ce)CoO ₃ and their properties in toluene catalytic total oxidation. ChemCatChem, 2020, 12, 2271-2282.	3.7	12
20	Hierarchical porous ε-MnO2 from perovskite precursor: Application to the formaldehyde total oxidation. Chemical Engineering Journal, 2020, 388, 124146.	12.7	42
21	Reactive Grinding Synthesis of LaBO3 (B: Mn, Fe) Perovskite; Properties for Toluene Total Oxidation. Catalysts, 2019, 9, 633.	3.5	20
22	Selective adsorption of formaldehyde and water vapors in NaY and NaX zeolites. Microporous and Mesoporous Materials, 2019, 288, 109563.	4.4	35
23	Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. Journal of Hazardous Materials, 2019, 379, 120781.	12.4	32
24	Au/Co promoted CeO ₂ catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies. Catalysis Science and Technology, 2019, 9, 3203-3213.	4.1	29
25	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
26	The Use of Zeolites for VOCs Abatement by Combining Non-Thermal Plasma, Adsorption, and/or Catalysis: A Review. Catalysts, 2019, 9, 98.	3.5	99
27	Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde. Sustainable Materials and Technologies, 2019, 20, e00091.	3.3	14
28	Effect of Mn loading onto hydroxyapatite supported Mn catalysts for toluene removal: Contribution of PCA assisted ToF-SIMS. Catalysis Today, 2018, 307, 41-47.	4.4	12
29	Reaction of formaldehyde over birnessite catalyst: A combined XPS and ToF-SIMS study. Applied Catalysis B: Environmental, 2018, 223, 192-200.	20.2	53
30	Synthesis and catalytic performances of K-OMS-2, Fe/K-OMS-2 and Fe-K-OMS-2 in post plasma-catalysis for dilute TCE abatement. Catalysis Today, 2018, 307, 20-28.	4.4	41
31	Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 2018, 223, 154-166.	20.2	196
32	Oscillatory Behavior of Pd-Au Catalysts in Toluene Total Oxidation. Catalysts, 2018, 8, 574.	3.5	9
33	The Design of MnOx Based Catalyst in Post-Plasma Catalysis Configuration for Toluene Abatement. Catalysts, 2018, 8, 91.	3.5	40
34	Highly Active Nobleâ€Metalâ€Free Copper Hydroxyapatite Catalysts for the Total Oxidation of Toluene. ChemCatChem, 2017, 9, 2275-2283.	3.7	26
35	From waste Coca Cola $\hat{A}^{ extsf{@}}$ to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon, 2017, 116, 490-499.	10.3	188
36	A Simple and Green Procedure to Prepare Efficient Manganese Oxide Nanopowder for the Low Temperature Removal of Formaldehyde. ChemCatChem, 2017, 9, 2366-2376.	3.7	22

3

#	Article	IF	CITATIONS
37	Guerbet Reaction over Strontium‣ubstituted Hydroxyapatite Catalysts Prepared at Various (Ca+Sr)/P Ratios. ChemCatChem, 2017, 9, 2250-2261.	3.7	30
38	Detection of formaldehyde oxidation catalysis by MCR-ALS analysis of multiset ToF-SIMS data in positive and negative modes. Chemometrics and Intelligent Laboratory Systems, 2017, 171, 80-85.	3.5	8
39	An in-Depth Investigation of Toluene Decomposition with a Glass Beads-Packed Bed Dielectric Barrier Discharge Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 10215-10226.	3.7	32
40	Characterization of Carbon Anode Protected by Low Boron Level: An Attempt To Understand Carbon–Boron Inhibitor Mechanism. ACS Sustainable Chemistry and Engineering, 2017, 5, 6700-6706.	6.7	14
41	Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles. Carbon, 2017, 111, 849-858.	10.3	31
42	Catalytic Removal of Volatile Organic Compounds. Catalysts, 2016, 6, 7.	3.5	9
43	Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 2016, 314, 88-94.	12.4	39
44	Cyclodextrin-cobalt (II) molecule-ion pairs as precursors to active Co3O4/ZrO2 catalysts for the complete oxidation of formaldehyde: Influence of the cobalt source. Journal of Catalysis, 2016, 341, 191-204.	6.2	46
45	Active Mn species well dispersed on Ca2+ enriched apatite for total oxidation of toluene. Applied Catalysis B: Environmental, 2016, 184, 87-95.	20.2	44
46	A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials, 2016, 8, e240-e240.	7.9	66
47	Toluene total oxidation over Pd and Au nanoparticles supported on hydroxyapatite. Comptes Rendus Chimie, 2016, 19, 525-537.	0.5	33
48	Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 2016, 283, 668-675.	12.7	44
49	Removal of Toluene over NaX Zeolite Exchanged with Cu2+. Catalysts, 2015, 5, 1479-1497.	3.5	52
50	Synthesis of CaCO ₃ @C yolk–shell particles for CO ₂ adsorption. RSC Advances, 2015, 5, 24872-24876.	3.6	17
51	High resolution NMR unraveling Cu substitution of Mg in hydrotalcites–ethanol reactivity. Applied Catalysis A: General, 2015, 504, 533-541.	4.3	14
52	Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified "redox-precipitation route― Applied Catalysis B: Environmental, 2015, 172-173, 65-72.	20.2	80
53	Total Oxidation of Formaldehyde over MnO _{<i>x</i>} -CeO ₂ Catalysts: The Effect of Acid Treatment. ACS Catalysis, 2015, 5, 2260-2269.	11.2	199
54	Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents. Catalysis Science and Technology, 2015, 5, 2994-3006.	4.1	72

#	Article	IF	CITATIONS
55	Capture of formaldehyde by adsorption on nanoporous materials. Journal of Hazardous Materials, 2015, 300, 711-717.	12.4	129
56	Hierarchically nanostructured porous group V b metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs. Applied Catalysis B: Environmental, 2015, 162, 300-309.	20.2	24
57	Plasma-catalysis of low TCE concentration in air using LaMnO3+l̂´ as catalyst. Applied Catalysis B: Environmental, 2014, 147, 904-911.	20.2	54
58	Effect of praseodymium and europium doping in La1â^'Ln MnO3+ (Ln: Pr or Eu, 0 ≤≤1) perosvkite catalysts for total methane oxidation. Applied Catalysis A: General, 2014, 469, 98-107.	4.3	33
59	Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. Journal of Materials Chemistry A, 2014, 2, 11073-11090.	10.3	102
60	Mesoporous Silicaâ€Confined Manganese Oxide Nanoparticles as Highly Efficient Catalysts for the Lowâ€Temperature Elimination of Formaldehyde. ChemCatChem, 2014, 6, 152-161.	3.7	55
61	Investigation of the elimination of VOC mixtures over a Pd-loaded V-doped TiO ₂ support. New Journal of Chemistry, 2014, 38, 2066-2074.	2.8	27
62	Hierarchically porous Nb–TiO ₂ nanomaterials for the catalytic transformation of 2-propanol and n-butanol. New Journal of Chemistry, 2014, 38, 1988-1995.	2.8	10
63	A combined ToF-SIMS and XPS study for the elucidation of the role of water in the performances of a Post-Plasma Process using LaMnO 3+1 [°] as catalyst in the total oxidation of trichloroethylene. Applied Surface Science, 2014, 320, 154-160.	6.1	21
64	ToFâ€SIMS studies of the TiO ₂ â€ZrO ₂ supported palladium as trace level used in the total oxidation of TCE in humid air. Surface and Interface Analysis, 2013, 45, 566-569.	1.8	4
65	Washcoating of cordierite honeycomb with Ce–Zr–Mn mixed oxides for VOC catalytic oxidation. Chemical Engineering Journal, 2013, 223, 536-546.	12.7	75
66	Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde. Applied Catalysis B: Environmental, 2013, 138-139, 381-390.	20.2	82
67	Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon. Industrial Crops and Products, 2013, 49, 108-116.	5.2	34
68	Influence of hierarchically porous niobium doped TiO2 supports in the total catalytic oxidation of model VOCs over noble metal nanoparticles. Applied Catalysis B: Environmental, 2013, 142-143, 149-160.	20.2	44
69	Combustion synthesis of LaMn1â^xAlxO3+δ (0 ≤ ≤): tuning catalytic properties for methane deep oxidation. Catalysis Science and Technology, 2013, 3, 1002.	4.1	31
70	Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination. ChemSusChem, 2013, 6, 578-592.	6.8	214
71	Additional effects of Pt and Nb on hierarchically porous titania in the catalytic removal of n-butanol. Catalysis Today, 2012, 192, 154-159.	4.4	32
72	Unburned carbon from bagasse fly ash as a support for a VOC oxidation catalyst. Catalysis Today, 2012, 190, 47-53.	4.4	20

#	Article	IF	CITATIONS
73	Pd- and/or Au-Loaded Nb- and V-Doped Macro-Mesoporous TiO2 Supports as Catalysts for the Total Oxidation of VOCs. European Journal of Inorganic Chemistry, 2012, 2012, 2812-2818.	2.0	29
74	Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: Effects of ultrasonic assisted in the synthesis. Catalysis Today, 2011, 176, 286-291.	4.4	49
75	Formaldehyde total oxidation over mesoporous MnOx catalysts. Catalysis Today, 2011, 176, 277-280.	4.4	77
76	Qualitative By-Product Identification of Plasma-Assisted TCE Abatement by Mass Spectrometry and Fourier-Transform Infrared Spectroscopy. Plasma Chemistry and Plasma Processing, 2011, 31, 707-718.	2.4	17
77	Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts. Journal of Hazardous Materials, 2011, 188, 422-427.	12.4	97
78	Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Applied Catalysis B: Environmental, 2011, , .	20.2	13
79	Nobleâ€Metalâ€Based Catalysts Supported on Zeolites and Macroâ€Mesoporous Metal Oxide Supports for the Total Oxidation of Volatile Organic Compounds. ChemSusChem, 2011, 4, 1420-1430.	6.8	99
80	Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catalysis Today, 2011, 164, 124-130.	4.4	38
81	Influence of the meso-macroporous ZrO2–TiO2 calcination temperature on the pre-reduced Pd/ZrO2–TiO2 (1/1) performances in chlorobenzene total oxidation. Catalysis Today, 2011, 164, 566-570.	4.4	22
82	Non-thermal plasma abatement of trichloroethylene with DC corona discharges. WIT Transactions on Ecology and the Environment, 2011, , .	0.0	2
83	Effect of ethylenediamine as chelating agent of cobalt species upon the cobalt-support interactions: application to the VOC catalytic removal. Studies in Surface Science and Catalysis, 2010, 175, 389-392.	1.5	1
84	Calcium-Deficient and Stoichiometric Hydroxyapatites Promoted by Cobalt for the Catalytic Removal of Oxygenated Volatile Organic Compounds. Catalysis Letters, 2010, 135, 197-206.	2.6	31
85	Synergistic Coupling of the Redox Properties of Supports and Cobalt Oxide Co3O4 for the Complete Oxidation of Volatile Organic Compounds. Catalysis Letters, 2010, 137, 141-149.	2.6	50
86	Use and observation of the hydrotalcite "memory effect―for VOC oxidation. Catalysis Today, 2010, 157, 191-197.	4.4	48
87	Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products. Comptes Rendus Chimie, 2010, 13, 494-501.	0.5	37
88	Mesoporous manganese oxide catalysts for formaldehyde removal: influence of the cerium incorporation. Studies in Surface Science and Catalysis, 2010, , 517-520.	1.5	8
89	Preparation and characterization of nanocrystallines Mn-Ce-Zr mixed oxide catalysts by sol-gel method: application to the complete oxidation of n-butanol. Studies in Surface Science and Catalysis, 2010, 175, 731-734.	1.5	6
90	Investigation of the microwave heating techniques for the synthesis of LaMnO3+δ. Studies in Surface Science and Catalysis, 2010, 175, 533-536.	1.5	1

#	Article	IF	CITATIONS
91	Thermal behaviour and catalytic properties towards propene combustion of zirconia modified by different first row transition metals. Journal of Analytical and Applied Pyrolysis, 2008, 81, 20-26.	5.5	16
92	Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene. Catalysis Today, 2008, 137, 335-339.	4.4	84
93	Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports. Catalysis Today, 2008, 137, 379-384.	4.4	46
94	HMS mesoporous silica as cobalt support for the Fischer–Tropsch Synthesis: Pretreatment, cobalt loading and particle size effects. Journal of Molecular Catalysis A, 2008, 281, 146-153.	4.8	71
95	Toluene total oxidation over Co supported catalysts synthesised using "memory effect―of Mg–Al hydrotalcite. Catalysis Communications, 2008, 9, 1639-1643.	3.3	45
96	Characterisation of palladium supported on exchanged BEA and FAU zeolites for VOCs catalytic oxidation. Studies in Surface Science and Catalysis, 2007, 160, 209-216.	1.5	1
97	Characterisation of new Pd / hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for toluene total oxidation. Studies in Surface Science and Catalysis, 2007, , 201-208.	1.5	8
98	Catalytic activity of copper and palladium based catalysts for toluene total oxidation. Catalysis Today, 2007, 119, 317-320.	4.4	131
99	Modified Co3O4/ZrO2 catalysts for VOC emissions abatement. Catalysis Today, 2007, 119, 332-337.	4.4	37
100	Promotional effect of gold added to palladium supported on a new mesoporous TiO2 for total oxidation of volatile organic compounds. Catalysis Today, 2007, 122, 391-396.	4.4	116
101	Additional effects of cobalt precursor and zirconia support modifications for the design of efficient VOC oxidation catalysts. Applied Catalysis B: Environmental, 2007, 70, 393-399.	20.2	92
102	Influence of the exchanged cation in Pd/BEA and Pd/FAU zeolites for catalytic oxidation of VOCs. Applied Catalysis B: Environmental, 2007, 70, 377-383.	20.2	100
103	Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene. Applied Catalysis B: Environmental, 2007, 75, 157-166.	20.2	120
104	Physico-chemical study of impregnated Cu and V species on CeO2 support by thermal analysis, XRD, EPR, 51V-MAS-NMR and XPS. Journal of Materials Science, 2007, 42, 6188-6196.	3.7	15
105	Synthesis and characterization of Cu–Co–Fe hydrotalcites and their calcined products. Journal of Porous Materials, 2007, 14, 103-110.	2.6	25
106	Catalytic Removal of Toluene in Air over Co–Mn–Al Nano-oxides Synthesized by Hydrotalcite Route. Catalysis Letters, 2007, 118, 165-172.	2.6	83
107	New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation. Applied Catalysis A: General, 2006, 310, 61-69.	4.3	120
108	Investigation of the Cu–Zr–Y oxides activity in the carbon black catalytic oxidation by differential thermal analysis and temperature programmed reduction. Thermochimica Acta, 2006, 443, 141-146.	2.7	9

#	Article	IF	CITATIONS
109	Influence of the Ethylenediamine Addition on the Activity, Dispersion and Reducibility of Cobalt Oxide Catalysts Supported over ZrO2 for Complete VOC Oxidation. Catalysis Letters, 2006, 108, 87-95.	2.6	38
110	Polarization field effects at liquid-crystal-droplet–polymer interfaces. Physical Review E, 2006, 73, 041702.	2.1	7
111	Thermal analysis and temperature-programmed reduction studies of copper–zirconium and copper–zirconium–yttrium compounds. Thermochimica Acta, 2005, 427, 193-200.	2.7	17
112	EPR study of ceria–silica and ceria–alumina catalysts: Localization of superoxide radical anions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 199-207.	4.7	29
113	Bulk and surface structures of iron doped zirconium oxide systems: Influence of preparation method. Journal of Materials Science, 2005, 40, 933-942.	3.7	19
114	Thermal analysis and epr studies of carbon black oxidation in the presence of copper loaded Y2O3-CeO2-ZrO2 catalyst. Journal of Thermal Analysis and Calorimetry, 2004, 75, 857-865.	3.6	7
115	Total Oxidation of Propene and Toluene on Copper/Yttrium Doped Zirconia. Kinetics and Catalysis, 2004, 45, 227-233.	1.0	21
116	Combustion of Carbon Black Catalyzed by Transition Metal-Promoted Y2O3–CeO2–ZrO2Solid Solutions1. Kinetics and Catalysis, 2004, 45, 429-435.	1.0	17
117	Title is missing!. Inorganic Materials, 2003, 39, 503-509.	0.8	6
118	Transformation of vaterite into calcite in the absence and the presence of copper(II) species. Journal of Thermal Analysis and Calorimetry, 2003, 74, 21-27.	3.6	14
119	Total oxidation of propene and toluene in the presence of zirconia doped by copper and yttrium. Applied Catalysis B: Environmental, 2003, 43, 261-271.	20.2	112
120	Palladium-based catalysts for the synthesis of alcohols. Journal of Molecular Catalysis A, 2003, 206, 339-351.	4.8	11
121	Oxidative coupling of methane catalyzed by rare earth oxides. Applied Catalysis A: General, 2003, 245, 209-220.	4.3	120
122	Influence of the preparation method on the activity and stability of copper–zirconium catalysts for propene deep oxidation reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227, 63-75.	4.7	18
123	Catalytic properties of beta zeolite exchanged with Pd and Fe for toluene total oxidation. Studies in Surface Science and Catalysis, 2002, 142, 699-706.	1.5	15
124	Characterisation of Mg/Al hydrotalcite with interlayer palladium complex for catalytic oxidation of toluene. Applied Catalysis A: General, 2002, 234, 91-101.	4.3	109
125	Structural Changes in ZrO2 Catalyst Doped with Fe and Cu. EPR Study. , 2002, , 577-583.		0
126	Title is missing!. Magyar Apróvad Közlemények, 2001, 66, 645-658.	1.4	10

#	Article	IF	CITATIONS
127	Synthesis of Tungsten Carbides by Temperature-Programmed Reaction with CH4–H2 Mixtures. Influence of the CH4 and Hydrogen Content in the Carburizing Mixture. Journal of Solid State Chemistry, 2000, 154, 412-426.	2.9	49
128	Electron Paramagnetic Resonance in Combination with the Thermal Analysis, X-ray Diffraction, and Raman Spectroscopy to Follow the Structural Properties of ZrxCe1-xO2Solid Systems and Precursors. Chemistry of Materials, 2000, 12, 3830-3835.	6.7	54
129	An EPR investigation on the reactivity of oxygen from ceria modified bimetallic Pt-Rh/Al2O3 catalysts in the CO+NO reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 158, 241-247.	4.7	12
130	Transformation of tetragonal zirconia phase to monoclinic phase in the presence of Fe3+ ions as probes: an EPR study. Physical Chemistry Chemical Physics, 1999, 1, 4975-4980.	2.8	85
131	Treatment of bulk group VI transition metal carbides with hydrogen and oxygen. Applied Catalysis A: General, 1995, 121, 169-190.	4.3	41
132	Bimetallic nickel-rhodium catalysts. II. Activity and selectivity in the hydrogenolysis of butane. Applied Catalysis A: General, 1995, 123, 161-172.	4.3	4
133	Influence of anionic vacancies in doped zirconia for propene catalytic oxidation. , O, , .		0
134	Influence of Shaping on Pd and Pt/TiO ₂ Catalysts in Total Oxidation of VOCs. Advanced Materials Research, 0, 324, 162-165.	0.3	5