Yuxing Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-catalyzed oxidative cross-dehydrogenative coupling (CDC) reaction of alcohols with secondary phosphine oxides. Tetrahedron Letters, 2022, 99, 153822.	1.4	5
2	Palladium-catalyzed C–P cross-coupling of allenic alcohols with <i>H</i> -phosphonates leading to 2-phosphinoyl-1,3-butadienes. Chemical Communications, 2021, 57, 339-342.	4.1	13
3	Fast Identification of Adverse Drug Reactions (ADRs) of Digestive and Nervous Systems of Organic Drugs by In Silico Models. Molecules, 2021, 26, 930.	3.8	1
4	Visible-Light-Induced Oxidative C–H Functionalization of Unreactive Cycloalkanes, Alcohols, and Ethers with Alkynylphosphine Oxides into Benzo[<i>b</i>]phosphole Oxides under Photocatalyst-, Metal-, and Base-Free Conditions. Journal of Organic Chemistry, 2021, 86, 13092-13099.	3.2	5
5	Palladium-Catalyzed Addition/Cyclization of (2-Hydroxyaryl)boronic Acids with Alkynylphosphonates: Access to Phosphacoumarins. Organic Letters, 2020, 22, 8156-8160.	4.6	5
6	TfOH-Catalyzed Phosphinylation of 2,3-Allenols into Î ³ -Ketophosphine Oxides. Journal of Organic Chemistry, 2020, 85, 8185-8195.	3.2	14
7	Azobisisobutyronitrile-Initiated Oxidative C–H Functionalization of Simple Alcohols with Diaryl(arylethynyl)phosphine Oxides: A Metal-Free Approach toward Hydroxymethyl Benzo[<i>b</i>]phosphole Oxides and 6 <i>H</i> -Indeno[2,1- <i>b</i>]phosphindole 5-Oxide Derivatives. Iournal of Organic Chemistry, 2020, 85, 6359-6371.	3.2	10
8	Spectroscopic studies of the interaction between phosphorus heterocycles and cytochrome P450. Journal of Pharmaceutical Analysis, 2020, 11, 757-763.	5.3	1
9	Effect of high hydrostatic pressure on prebiotic peptide synthesis. Chinese Chemical Letters, 2019, 30, 367-370.	9.0	4
10	Exploration in the Mechanism of Action of Licorice by Network Pharmacology. Molecules, 2019, 24, 2959.	3.8	23
11	Three-component 3-(phosphoryl)methylindole synthesis from indoles, H-phosphine oxides and carbonyl compounds under metal-free conditions. Green Chemistry, 2019, 21, 792-797.	9.0	20
12	Copper-Catalyzed Direct Twofold C–P Cross-Coupling of Unprotected Propargylic 1,4-Diols: Access to 2,3-Bis(diarylphosphynyl)-1,3-butadienes. Organic Letters, 2019, 21, 579-583.	4.6	18
13	Discovery of molecular mechanism of a clinical herbal formula upregulating serum HDL-c levels in treatment of metabolic syndrome by in vivo and computational studies. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 174-180.	2.2	5
14	Copper-Catalyzed Direct Oxidative C–H Functionalization of Unactivated Cycloalkanes into Cycloalkyl Benzo[b]phosphole Oxides. Organic Letters, 2018, 20, 3455-3459.	4.6	31
15	Identfication of Potent LXRβ-Selective Agonists without LXRα Activation by In Silico Approaches. Molecules, 2018, 23, 1349.	3.8	3
16	Stable isotope N -phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry. Analytica Chimica Acta, 2017, 978, 24-34.	5.4	29
17	Zn(OTf) ₂ -Catalyzed Phosphinylation of Propargylic Alcohols: Access to γ-Ketophosphine Oxides. Journal of Organic Chemistry, 2017, 82, 11659-11666.	3.2	23
18	Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. RSC Advances, 2017, 7, 55389-55399.	3.6	3

Yuxing Gao

#	Article	IF	CITATIONS
19	Structural Investigation for Optimization of Anthranilic Acid Derivatives as Partial FXR Agonists by in Silico Approaches. International Journal of Molecular Sciences, 2016, 17, 536.	4.1	13
20	Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach. International Journal of Molecular Sciences, 2016, 17, 2114.	4.1	30
21	Multi-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking. Molecules, 2016, 21, 1639.	3.8	7
22	K ₂ S ₂ O ₈ -mediated metal-free direct P–H/C–H functionalization: a convenient route to benzo[b]phosphole oxides from unactivated alkynes. Green Chemistry, 2016, 18, 3522-3526.	9.0	59
23	Hydrogen sulfide removal by copper sulfate circulation method. Korean Journal of Chemical Engineering, 2016, 33, 2359-2365.	2.7	5
24	Copper-Catalyzed Direct Coupling of Unprotected Propargylic Alcohols with P(O)H Compounds: Access to Allenylphosphoryl Compounds under Ligand- and Base-Free Conditions. Organic Letters, 2016, 18, 6066-6069.	4.6	39
25	Copper-catalyzed decarboxylative Câ^'P cross coupling of arylpropiolic acids with dialkyl hydrazinylphosphonates leading to alkynylphosphonates. Synthetic Communications, 2016, 46, 1175-1181.	2.1	13
26	TBAI-catalyzed oxidative C–H functionalization: a new route to benzo[b]phosphole oxides. Chemical Communications, 2016, 52, 2815-2818.	4.1	29
27	Palladium-Catalyzed Domino Addition and Cyclization of Arylboronic Acids with 3-Hydroxyprop-1-yn-1-yl Phosphonates Leading to 1,2-Oxaphospholenes. Journal of Organic Chemistry, 2015, 80, 6908-6914.	3.2	13
28	Ag-mediated cascade decarboxylative coupling and annulation: a convenient route to 2-phosphinobenzo[b]phosphole oxides. Organic and Biomolecular Chemistry, 2015, 13, 8221-8231.	2.8	46
29	Reactivity of Germylene toward Phosphorus-Containing Compounds: Nucleophilic Addition and Tautomerism. Inorganic Chemistry, 2015, 54, 4423-4430.	4.0	19
30	2D and 3D QSAR models for identifying diphenylpyridylethanamine based inhibitors against cholesteryl ester transfer protein. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4487-4495.	2.2	10
31	Nickel-Catalyzed One-Pot Tandem 1,4-1,2-Addition of P(O)H Compounds to 1,10-Phenanthrolines. Journal of Organic Chemistry, 2015, 80, 1192-1199.	3.2	28
32	Palladium-catalyzed air-based oxidative coupling of arylboronic acids with H-phosphine oxides leading to aryl phosphine oxides. Organic and Biomolecular Chemistry, 2014, 12, 2895.	2.8	49
33	Experimental and Theoretical Study on Palladium-Catalyzed C–P Bond Formation via Direct Coupling of Triarylbismuths with P(O)–H Compounds. Journal of Organic Chemistry, 2014, 79, 608-617.	3.2	76
34	Experimental and theoretical studies on nickel–zinc-catalyzed cross-coupling of gem-dibromoalkenes with P(O)–H compounds. RSC Advances, 2014, 4, 2322-2326.	3.6	24
35	Catalyst-free synthesis of cycloalkenyl phosphonates. RSC Advances, 2014, 4, 14740-14743.	3.6	5
36	Nickel-Catalyzed Decarboxylative C–P Cross-Coupling of Alkenyl Acids with P(O)H Compounds. Journal of Organic Chemistry, 2014, 79, 8118-8127.	3.2	84

Yuxing Gao

#	Article	IF	CITATIONS
37	Palladiumâ€Catalyzed Cï£;P Crossâ€Coupling of Arylhydrazines with Hâ€Phosphonates <i>via</i> Cï£;N Bond Cleavage. Advanced Synthesis and Catalysis, 2014, 356, 2948-2954.	4.3	53
38	Copper-Catalyzed Decarboxylative C–P Cross-Coupling of Alkynyl Acids with H-Phosphine Oxides: A Facile and Selective Synthesis of (E)-1-Alkenylphosphine Oxides. Organic Letters, 2014, 16, 4464-4467.	4.6	93
39	Cs ₂ CO ₃ -Promoted One-Pot Synthesis of Alkynylphosphonates, -phosphinates, and -phosphine Oxides. Journal of Organic Chemistry, 2014, 79, 3678-3683.	3.2	46
40	Nickel(II)â€Magnesiumâ€Catalyzed Crossâ€Coupling of 1,1â€Dibromoâ€1â€alkenes with Diphenylphosphine Oxi Oneâ€Pot Synthesis of (<i>E</i>)â€1â€Alkenylphosphine Oxides or Bisphosphine Oxides. Advanced Synthesis and Catalysis, 2013, 355, 659-666.	ide: 4.3	68
41	Copperâ€Catalyzed Synthesis of αâ€Hydroxy Phosphonates from <i>H</i> â€Phosphonates and Alcohols or Ethers. Chemistry - an Asian Journal, 2013, 8, 713-716.	3.3	40
42	Nickel-Catalyzed C–P Cross-Coupling of Arylboronic Acids with P(O)H Compounds. Organic Letters, 2013, 15, 5362-5365.	4.6	113
43	Palladium(II)â€Catalyzed Hydration of Alkynylphosphonates to βâ€Ketophosphonates. Advanced Synthesis and Catalysis, 2012, 354, 2427-2432.	4.3	90
44	Copperâ€Catalyzed Synthesis of Alkylphosphonates from <i>H</i> â€Phosphonates and <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2012, 354, 2659-2664.	4.3	77
45	Comparison of the isomeric αâ€amino acyl adenylates and amino acid phosphoramidates of adenosine by electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 291-300.	1.5	10
46	Fragmentation of pentacoordinate spirobicyclic aminoacylâ€phosphoranes (Pâ€AAs) by electrospray ionization tandem mass spectrometry concerning P–O and P–N bond cleavage. Rapid Communications in Mass Spectrometry, 2011, 25, 3151-3160.	1.5	4
47	Formation of cyclic acylphosphoramidates in mass spectra of <i>N</i> â€monoalkyloxyphosphoryl amino acids using electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 2010, 45, 779-787.	1.6	22
48	Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with <i>H</i> -Phosphonates Leading to Alkynylphosphonates. Journal of the American Chemical Society, 2009, 131, 7956-7957.	13.7	268
49	Application of (31P) NMR in Analyzing the Degradation Efficiency of Organic Phosphorus Degrading-Bacteria. Environmental Monitoring and Assessment, 2007, 130, 281-287.	2.7	6
50	Substituent effects and mechanism elucidation of enantioselective sulfoxidation catalyzed by vanadium Schiff base complexes. New Journal of Chemistry, 2005, 29, 1125.	2.8	53