Elvira G Tazeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5468031/publications.pdf

Version: 2024-02-01

22 160 7 12
papers citations h-index g-index

22 22 101 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Comparative Analysis of Vanadyl Porphyrins Isolated from Heavy Oil Asphaltenes with High and Low Vanadium Content. Petroleum Chemistry, 2022, 62, 83-93.	1.4	2
2	A Comparative Analysis of the Solubility of Asphaltene Fractions with Addition of Petroleum Vanadyl Porphyrins. Petroleum Chemistry, 2022, 62, 240-249.	1.4	0
3	Obtaining Pure Vanadyl Porphyrins from Heavy Oil Residues to Form Bases of Catalysts for Different Processes. Catalysis in Industry, 2021, 13, 105-110.	0.7	О
4	Distribution of Vanadium and Nickel During Sequential Fractionation of Heavy Crude Oil Resins by Adsorption Chromatographic Separation and Extraction. Petroleum Chemistry, 2021, 61, 561-567.	1.4	1
5	Impact of Asphaltenes on the Adsorption Behavior of Petroleum Vanadyl Porphyrins: Kinetic and Thermodynamic Aspects. Energy & Fuels, 2021, 35, 14527-14541.	5.1	9
6	Adsorption-Extrographic Preconcentration of Petroleum Vanadyl Porphyrins from Dimethylformamide Extract of Heavy Petroleum Asphaltenes. Russian Journal of Applied Chemistry, 2021, 94, 1324-1333.	0.5	1
7	A Comparative Analysis of Vanadyl Porphyrins Isolated from Resins of Heavy Oils with High and Low Vanadium Content. Processes, 2021, 9, 2235.	2.8	5
8	Complexes of Transition Metals with Petroleum Porphyrin Ligands: Preparation and Evaluation of Catalytic Ability. Catalysts, 2021, 11, 1506.	3.5	5
9	Comparative analysis of composition and solubility of asphaltes from heavy oils of different oil fields. Petroleum Science and Technology, 2020, 38, 405-410.	1.5	4
10	Influence of the Composition of the Sulfuric Acid Cation Exchanger on the Efficiency of Chromatographic Purification of Petroleum Vanadyl Porphyrins. Russian Journal of Applied Chemistry, 2020, 93, 888-896.	0.5	4
11	Preparative-scale purification of petroleum vanadyl porphyrins by sulfuric acid loaded macroporous silica. Journal of Porphyrins and Phthalocyanines, 2020, 24, 528-537.	0.8	7
12	Obtaining Pure Vanadyl Porphyrins from Heavy Petroleum Residue to Create Catalysts for Various Processes. Kataliz V Promyshlennosti, 2020, 20, 352-358.	0.3	2
13	Distribution of Vanadium and Nickel in the Case of Two-Step Solvent Fractionation of Asphaltenes of Heavy Oils. Petroleum Chemistry, 2019, 59, S30-S36.	1.4	2
14	Vanadium and Nickel Distribution in Resin Fractions of High-Sulfur Heavy Oils. Chemistry and Technology of Fuels and Oils, 2018, 53, 862-868.	0.5	5
15	Relationship of Light Absorption and Vanadium Content in Asphaltenes and Resins of Heavy Oils. Petroleum Science and Technology, 2018, 36, 1657-1662.	1.5	О
16	Thermal stability and sorption properties of asphaltene sulfocathionites. Petroleum Science and Technology, 2018, 36, 1837-1842.	1.5	5
17	Distribution of vanadium and vanadyl porphyrins during fractionation of resins of heavy sulfurous oils. Petroleum Science and Technology, 2018, 36, 1319-1324.	1.5	2
18	Differentiation of heavy oils according to the vanadium and nickel content in asphaltenes and resins. Petroleum Chemistry, 2017, 57, 849-854.	1.4	22

#	Article	IF	CITATION
19	Vanadium and paramagnetic vanadyl complexes content in asphaltenes of heavy oils of various productive sediments. Petroleum Science and Technology, 2017, 35, 1468-1472.	1.5	16
20	Chromatographic isolation of vanadyl porphyrins from heavy oil resins. Russian Chemical Bulletin, 2017, 66, 1450-1455.	1.5	13
21	Structural-group composition and properties of heavy oil asphaltenes modified with sulfuric acid. Petroleum Science and Technology, 2016, 34, 1805-1811.	1.5	23
22	Features of the composition of vanadyl porphyrins in the crude extract of asphaltenes of heavy oil with high vanadium content. Petroleum Science and Technology, 2016, 34, 177-183.	1.5	32