
Fachuang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467637/publications.pdf Version: 2024-02-01

Еленилыс Ци

#	Article	IF	CITATIONS
1	High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. Npj Systems Biology and Applications, 2022, 8, 3.	1.4	5
2	Isolation, Characterization, and Depolymerization of <scp>l</scp> â€Cysteine Substituted <i>Eucalyptus</i> Lignin. Global Challenges, 2022, 6, 2100130.	1.8	2
3	Synthesis of hydroxycinnamoyl shikimates and their role in monolignol biosynthesis. Holzforschung, 2022, 76, 133-144.	0.9	3
4	A tailored fast thioacidolysis method incorporating multi-reaction monitoring mode of GC-MS for higher sensitivity on lignin monomer quantification. Holzforschung, 2022, .	0.9	0
5	The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nature Plants, 2022, 8, 500-512.	4.7	42
6	Fabrication of Novel Cellulose-Based Antibacterial Film Loaded with Poacic Acid against Staphylococcus Aureus. Journal of Polymers and the Environment, 2021, 29, 745-754.	2.4	5
7	Efficient Synthesis of Pinoresinol, an Important Lignin Dimeric Model Compound. Frontiers in Energy Research, 2021, 9, .	1.2	2
8	Aminoâ€functionalized glucuronoxylan as an efficient bioâ€based emulsifier. Cellulose, 2021, 28, 3677-3689.	2.4	10
9	A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chemistry, 2021, 23, 5106-5112.	4.6	46
10	Incorporation of catechyl monomers into lignins: lignification from the non-phenolic end <i>via</i> Diels–Alder cycloaddition?. Green Chemistry, 2021, 23, 8995-9013.	4.6	6
11	Revealing the structure-activity relationship between lignin and anti-UV radiation. Industrial Crops and Products, 2021, 174, 114212.	2.5	39
12	Profiling of the formation of lignin-derived monomers and dimers from <i>Eucalyptus</i> alkali lignin. Green Chemistry, 2020, 22, 7366-7375.	4.6	51
13	Mild Acetylation and Solubilization of Ground Whole Plant Cell Walls in EmimAc: A Method for Solution-State NMR in DMSO- <i>d</i> ₆ . Analytical Chemistry, 2020, 92, 13101-13109.	3.2	6
14	Naphthalene Structures Derived from Lignins During Phenolation. ChemSusChem, 2020, 13, 5549-5555.	3.6	8
15	The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in Arabidopsis. Journal of Experimental Botany, 2020, 71, 5469-5483.	2.4	39
16	Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers. International Journal of Biological Macromolecules, 2020, 152, 411-417.	3.6	21
17	New Products Generated from the Transformations of Ferulic Acid Dilactone. Biomolecules, 2020, 10, 175.	1.8	8
18	Revealing Structural Modifications of Lignin in Acidic γ-Valerolactone-H2O Pretreatment. Polymers, 2020, 12, 116.	2.0	10

Fachuang Lu

#	Article	IF	CITATIONS
19	Ultrastretchable and Antifreezing Double-Cross-Linked Cellulose Ionic Hydrogels with High Strain Sensitivity under a Broad Range of Temperature. ACS Sustainable Chemistry and Engineering, 2019, 7, 14256-14265.	3.2	93
20	Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid. Green Chemistry, 2019, 21, 4732-4747.	4.6	26
21	A Highly Efficient and Durable Fluorescent Paper Produced from Bacterial Cellulose/Eu Complex and Cellulosic Fibers. Nanomaterials, 2019, 9, 1322.	1.9	11
22	Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules, 2019, 20, 2096-2104.	2.6	171
23	Revealing Structural Differences between Alkaline and Kraft Lignins by HSQC NMR. Industrial & Engineering Chemistry Research, 2019, 58, 5707-5714.	1.8	59
24	Synthesis and emulsifying properties of long-chain succinic acid esters of glucuronoxylans. Cellulose, 2019, 26, 3713-3724.	2.4	17
25	Improved Dispersion of Bacterial Cellulose Fibers for the Reinforcement of Paper Made from Recycled Fibers. Nanomaterials, 2019, 9, 58.	1.9	6
26	Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions. Applied Catalysis B: Environmental, 2019, 248, 31-43.	10.8	126
27	Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chemical Communications, 2018, 54, 2304-2307.	2.2	55
28	A highly recyclable dip-catalyst produced from palladium nanoparticle-embedded bacterial cellulose and plant fibers. Green Chemistry, 2018, 20, 1085-1094.	4.6	62
29	Angelica Stem: A Potential Low-Cost Source of Bioactive Phthalides and Phytosterols. Molecules, 2018, 23, 3065.	1.7	15
30	High-Efficient and Recyclable Magnetic Separable Catalyst for Catalytic Hydrogenolysis of β-O-4 Linkage in Lignin. Polymers, 2018, 10, 1077.	2.0	6
31	High Electromagnetic Interference Shielding Effectiveness of Carbon Nanotube–Cellulose Composite Films with Layered Structures. Macromolecular Materials and Engineering, 2018, 303, 1800377.	1.7	34
32	Elucidating Tricin-Lignin Structures: Assigning Correlations in HSQC Spectra of Monocot Lignins. Polymers, 2018, 10, 916.	2.0	30
33	<i>In situ</i> MnO _x /N-doped carbon aerogels from cellulose as monolithic and highly efficient catalysts for the upgrading of bioderived aldehydes. Green Chemistry, 2018, 20, 3593-3603.	4.6	54
34	The structure-antioxidant activity relationship of dehydrodiferulates. Food Chemistry, 2018, 269, 480-485.	4.2	43
35	Ligninâ€Derived Thioacidolysis Dimers: Reevaluation, New Products, Authentication, and Quantification. ChemSusChem, 2017, 10, 830-835.	3.6	41
36	Field-Grown Transgenic Hybrid Poplar with Modified Lignin Biosynthesis to Improve Enzymatic Saccharification Efficiency. ACS Sustainable Chemistry and Engineering, 2017, 5, 2407-2414.	3.2	16

Fachuang Lu

#	Article	IF	CITATIONS
37	Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb Plant Science, 2017, 258, 12-20.	1.7	34
38	Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose, 2017, 24, 3513-3523.	2.4	30
39	The reinforcement mechanism of bacterial cellulose on paper made from woody and non-woody fiber sources. Cellulose, 2017, 24, 5147-5156.	2.4	24
40	Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresource Technology, 2017, 244, 844-849.	4.8	153
41	Low Temperature Soda-Oxygen Pulping of Bagasse. Molecules, 2016, 21, 85.	1.7	22
42	Identification of 4–O–5-Units in Softwood Lignins via Definitive Lignin Models and NMR. Biomacromolecules, 2016, 17, 1909-1920.	2.6	77
43	Thioxanthone dicarboxamide derivatives as one-component photoinitiators for near-UV and visible LED (365–405 nm) induced photopolymerizations. RSC Advances, 2016, 6, 77093-77099.	1.7	10
44	Synthesis of Highly Polymerized Water-soluble Cellulose Acetate by the Side Reaction in Carboxylate Ionic Liquid 1-ethyl-3-methylimidazolium Acetate. Scientific Reports, 2016, 6, 33725.	1.6	28
45	Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydrate Polymers, 2015, 117, 133-139.	5.1	84
46	Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydrate Polymers, 2014, 111, 400-403.	5.1	22
47	Syntheses of Lignin-Derived Thioacidolysis Monomers and Their Uses as Quantitation Standards. Journal of Agricultural and Food Chemistry, 2012, 60, 922-928.	2.4	92
48	Effects of Coumarate 3-Hydroxylase Down-regulation on Lignin Structure. Journal of Biological Chemistry, 2006, 281, 8843-8853.	1.6	209