
Ghulam Mohammad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Mitochondrial DNA Damage in the Development of Diabetic Retinopathy, and the Metabolic Memory Phenomenon Associated with Its Progression. Antioxidants and Redox Signaling, 2010, 13, 797-805.	2.5	152
2	Abrogation of <i>MMP-9</i> Gene Protects Against the Development of Retinopathy in Diabetic Mice by Preventing Mitochondrial Damage. Diabetes, 2011, 60, 3023-3033.	0.3	131
3	Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radical Research, 2010, 44, 313-321.	1.5	129
4	TIAM1–RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia, 2014, 57, 1047-1056.	2.9	114
5	Diabetic Retinopathy, Superoxide Damage and Antioxidants. Current Pharmaceutical Biotechnology, 2011, 12, 352-361.	0.9	86
6	Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Laboratory Investigation, 2010, 90, 1365-1372.	1.7	85
7	Novel Role of Mitochondrial Matrix Metalloproteinase-2 in the Development of Diabetic Retinopathy. , 2011, 52, 3832.		76
8	High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Experimental Eye Research, 2013, 107, 101-109.	1.2	75
9	Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Experimental Eye Research, 2013, 109, 67-76.	1.2	74
10	Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinaseâ€9. Journal of Cellular Physiology, 2012, 227, 1052-1061.	2.0	70
11	Relationship between Vitreous Levels of Matrix Metalloproteinases and Vascular Endothelial Growth Factor in Proliferative Diabetic Retinopathy. PLoS ONE, 2013, 8, e85857.	1.1	70
12	Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1617-1626.	1.8	67
13	Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. Journal of Physiology and Biochemistry, 2015, 71, 359-372.	1.3	52
14	Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation. Cellular Physiology and Biochemistry, 2015, 36, 208-220.	1.1	45
15	The Proinflammatory Cytokine High-Mobility Group Box-1 Mediates Retinal Neuropathy Induced by Diabetes. Mediators of Inflammation, 2014, 2014, 1-10.	1.4	42
16	Glyceraldehyde-3-Phosphate Dehydrogenase in Retinal Microvasculature: Implications for the Development and Progression of Diabetic Retinopathy. , 2010, 51, 1765.		37
17	S100A4 is upregulated in proliferative diabetic retinopathy and correlates with markers of angiogenesis and fibrogenesis. Molecular Vision, 2014, 20, 1209-24.	1.1	37
18	Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Scientific Reports, 2020, 10, 6655.	1.6	36

GHULAM MOHAMMAD

#	Article	IF	CITATIONS
19	Neurotrophins and Neurotrophin Receptors in Proliferative Diabetic Retinopathy. PLoS ONE, 2013, 8, e65472.	1.1	36
20	High-Mobility Group Box-1 and Endothelial Cell Angiogenic Markers in the Vitreous from Patients with Proliferative Diabetic Retinopathy. Mediators of Inflammation, 2012, 2012, 1-7.	1.4	34
21	Role of matrix metalloproteinase-2 and -9 in the development of diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2012, 5, 1-8.	0.2	34
22	Expression of lysophosphatidic acid, autotaxin and acylglycerol kinase as biomarkers in diabetic retinopathy. Acta Diabetologica, 2013, 50, 363-371.	1.2	34
23	Upregulated Expression of Heparanase in the Vitreous of Patients With Proliferative Diabetic Retinopathy Originates From Activated Endothelial Cells and Leukocytes. , 2015, 56, 8239.		33
24	High-Mobility Group Box-1 Modulates the Expression of Inflammatory and Angiogenic Signaling Pathways in Diabetic Retina. Current Eye Research, 2015, 40, 1141-1152.	0.7	33
25	Poly (ADP-Ribose) Polymerase Mediates Diabetes-Induced Retinal Neuropathy. Mediators of Inflammation, 2013, 2013, 1-10.	1.4	31
26	The Angiogenic Biomarker Endocan is Upregulated in Proliferative Diabetic Retinopathy and Correlates with Vascular Endothelial Growth Factor. Current Eye Research, 2015, 40, 321-331.	0.7	30
27	Osteoprotegerin Is a New Regulator of Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy. , 2017, 58, 3189.		30
28	High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina. Mediators of Inflammation, 2013, 2013, 1-11.	1.4	29
29	Cellular Mechanisms of High Mobility Group 1 (HMGB-1) Protein Action in the Diabetic Retinopathy. PLoS ONE, 2014, 9, e87574.	1.1	29
30	Functional Regulation of an Oxidative Stress Mediator, Rac1, in Diabetic Retinopathy. Molecular Neurobiology, 2019, 56, 8643-8655.	1.9	28
31	Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. , 2019, 60, 3943.		27
32	Faulty homocysteine recycling in diabetic retinopathy. Eye and Vision (London, England), 2020, 7, 4.	1.4	27
33	Upregulation of Thrombin/Matrix Metalloproteinase-1/Protease-Activated Receptor-1 Chain in Proliferative Diabetic Retinopathy. Current Eye Research, 2016, 41, 1590-1600.	0.7	26
34	Epigenetic modifications in diabetes. Metabolism: Clinical and Experimental, 2022, 126, 154920.	1.5	26
35	Homocysteine Disrupts Balance between MMP-9 and Its Tissue Inhibitor in Diabetic Retinopathy: The Role of DNA Methylation. International Journal of Molecular Sciences, 2020, 21, 1771.	1.8	25
36	Association of HMGB1 with oxidative stress markers and regulators in PDR. Molecular Vision, 2017, 23, 853-871.	1.1	25

#	ARTICLE	IF	CITATIONS
37	id="M1"> <mml:mrow><mml:msub><mml:mrow><ml:mtext>ERK</ml:mtext></mml:mrow><m mathvariant="bold-italic">1<mml:mo>/</mml:mo><mml:mn mathvariant="bold-italic">2</mml:mn </m </mml:msub></mml:mrow> <	ıml:mn 1.0	23
38	Role of high-mobility group box-1 protein in disruption of vascular barriers and regulation of leukocyte–endothelial interactions. Journal of Receptor and Signal Transduction Research, 2015, 35, 340-345.	1.3	23
39	Interleukin-1β and mitochondria damage, and the development of diabetic retinopathy. Journal of Ocular Biology, Diseases, and Informatics, 2011, 4, 3-9.	0.2	22
40	Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy. Acta Ophthalmologica, 2018, 96, e27-e37.	0.6	22
41	Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. Lipids in Health and Disease, 2014, 13, 187.	1.2	20
42	Matrix metalloproteinase-14 is a biomarker of angiogenic activity in proliferative diabetic retinopathy. Molecular Vision, 2018, 24, 394-406.	1.1	20
43	Functional links between gelatinase B/matrix metalloproteinase-9 and prominin-1/CD133 in diabetic retinal vasculopathy and neuropathy. Progress in Retinal and Eye Research, 2014, 43, 76-91.	7.3	19
44	Nuclear Genome-Encoded Long Noncoding RNAs and Mitochondrial Damage in Diabetic Retinopathy. Cells, 2021, 10, 3271.	1.8	19
45	Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Current Eye Research, 2019, 44, 1133-1143.	0.7	18
46	Extracellular matrix metalloproteinase inducer (<scp>EMMPRIN</scp>) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy. Acta Ophthalmologica, 2017, 95, 697-704.	0.6	17
47	New Developments in the Pathophysiology and Management of Diabetic Retinopathy. Journal of Diabetes Research, 2013, 2013, 1-2.	1.0	16
48	Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. , 2020, 61, 35.		16
49	Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy. Scientific Reports, 2021, 11, 14097.	1.6	15
50	Coexpression of heparanase activity, cathepsin L, tissue factor, tissue factor pathway inhibitor, and MMP-9 in proliferative diabetic retinopathy. Molecular Vision, 2016, 22, 424-35.	1.1	15
51	The role of Raf-1 kinase in diabetic retinopathy. Expert Opinion on Therapeutic Targets, 2011, 15, 357-364.	1.5	14
52	The Tumor Necrosis Factor Superfamily Members TWEAK, TNFSF15 and Fibroblast Growth Factor-Inducible Protein 14 Are Upregulated in Proliferative Diabetic Retinopathy. Ophthalmic Research, 2015, 53, 122-130.	1.0	14
53	The Chemokine Platelet Factor-4 Variant (PF-4var)/CXCL4L1 Inhibits Diabetes-Induced Blood–Retinal Barrier Breakdown. , 2015, 56, 1956.		14
54	Myeloid-Related Protein-14/MRP-14/S100A9/Calgranulin B is Associated with Inflammation in Proliferative Diabetic Retinopathy. Ocular Immunology and Inflammation, 2018, 26, 1-10.	1.0	14

#	Article	IF	CITATIONS
55	High-Mobility Group Box-1 Protein Mediates the Regulation of Signal Transducer and Activator of Transcription-3 in the Diabetic Retina and in Human Retinal Müller Cells. Ophthalmic Research, 2017, 57, 150-160.	1.0	13
56	Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy. Journal of Diabetes Research, 2022, 2022, 1-14.	1.0	12
57	Unbalanced Vitreous Levels of Osteoprotegerin, RANKL, RANK, and TRAIL in Proliferative Diabetic Retinopathy. Ocular Immunology and Inflammation, 2018, 26, 1248-1260.	1.0	9
58	The Poly(ADP-Ribose)Polymerase-1 Inhibitor 1,5-Isoquinolinediol Attenuate Diabetes-Induced NADPH Oxidase-Derived Oxidative Stress in Retina. Journal of Ocular Pharmacology and Therapeutics, 2018, 34, 512-520.	0.6	9
59	Mitochondrial Fragmentation in a High Homocysteine Environment in Diabetic Retinopathy. Antioxidants, 2022, 11, 365.	2.2	8
60	Association of 150â€kDa oxygenâ€regulated protein with vascular endothelial growth factor in proliferative diabetic retinopathy. Acta Ophthalmologica, 2018, 96, e460-e467.	0.6	7
61	Rho-Associated Protein Kinase-1 Mediates the Regulation of Inflammatory Markers in Diabetic Retina and in Retinal Müller Cells. Annals of Clinical and Laboratory Science, 2018, 48, 137-145.	0.2	7
62	Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes. Eye and Brain, 2022, Volume 14, 59-69.	3.8	0