
Olivier Dormond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basic Science with Preclinical Models to Investigate and Develop Liquid Biopsy: What Are the Available Data and Is It a Fruitful Approach?. International Journal of Molecular Sciences, 2022, 23, 5343.	1.8	3
2	The Role of Liquid Biopsy in Hepatocellular Carcinoma Prognostication. Cancers, 2021, 13, 659.	1.7	25
3	Combining mTOR Inhibitors and T Cell-Based Immunotherapies in Cancer Treatment. Cancers, 2021, 13, 1359.	1.7	21
4	Experimental Models of Liquid Biopsy in Hepatocellular Carcinoma Reveal Cloneâ€Dependent Release of Circulating Tumor DNA. Hepatology Communications, 2021, 5, 1095-1105.	2.0	7
5	Mechanistic Target of Rapamycin Inhibitors in Renal Cell Carcinoma: Potential, Limitations, and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 636037.	1.8	16
6	Correlation Between Portal Pressure and Indocyanine Green Retention Rate is Unaffected by the Cause of Cirrhosis: A Prospective Study. World Journal of Surgery, 2021, 45, 2546-2555.	0.8	3
7	Characterization of Renal Cell Carcinoma Heterotypic 3D Co-Cultures with Immune Cell Subsets. Cancers, 2021, 13, 2551.	1.7	12
8	Molecular and Functional Analysis of Sunitinib-Resistance Induction in Human Renal Cell Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 6467.	1.8	12
9	Drug Repurposing to Identify a Synergistic High-Order Drug Combination to Treat Sunitinib-Resistant Renal Cell Carcinoma. Cancers, 2021, 13, 3978.	1.7	12
10	Integrating Phenotypic Search and Phosphoproteomic Profiling of Active Kinases for Optimization of Drug Mixtures for RCC Treatment. Cancers, 2020, 12, 2697.	1.7	11
11	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. , 2019, 7, 257.		120
12	Diclofenac Potentiates Sorafenib-Based Treatments of Hepatocellular Carcinoma by Enhancing Oxidative Stress. Cancers, 2019, 11, 1453.	1.7	15
13	Hypermobile Ehlersâ€Danlosâ€like syndrome in Fabry disease. Clinical Genetics, 2019, 95, 627-628.	1.0	1
14	Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Scientific Reports, 2019, 9, 7103.	1.6	95
15	mTOR in Human Diseases. International Journal of Molecular Sciences, 2019, 20, 2351.	1.8	6
16	Rebound pathway overactivation by cancer cells following discontinuation of PI3K or mTOR inhibition promotes cancer cell growth. Biochemical and Biophysical Research Communications, 2019, 513, 546-552.	1.0	2
17	CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget, 2019, 10, 7058-7070.	0.8	50
18	mTOR and Tumor Cachexia. International Journal of Molecular Sciences, 2018, 19, 2225.	1.8	24

OLIVIER DORMOND

#	Article	IF	CITATIONS
19	Fine-Tuning Tumor Endothelial Cells to Selectively Kill Cancer. International Journal of Molecular Sciences, 2017, 18, 1401.	1.8	20
20	Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	65
21	Evolving Significance and Future Relevance of Anti-Angiogenic Activity of mTOR Inhibitors in Cancer Therapy. Cancers, 2017, 9, 152.	1.7	41
22	Long-term follow-up of pulmonary function in Fabry disease: A bi-center observational study. PLoS ONE, 2017, 12, e0180437.	1.1	13
23	Ascending aortic remodelling in Fabry disease after long-term enzyme replacement therapy. Swiss Medical Weekly, 2017, 147, w14517.	0.8	3
24	Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors. Oncotarget, 2016, 7, 36666-36680.	0.8	25
25	Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors. Molecular Cancer, 2016, 15, 78.	7.9	54
26	Modulation of mTOR Signalling Triggers the Formation of Stem Cell-like Memory T Cells. EBioMedicine, 2016, 4, 50-61.	2.7	89
27	Antitumoral Effect of Sunitinib-eluting Beads in the Rabbit VX2 Tumor Model. Radiology, 2016, 280, 425-435.	3.6	30
28	Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies. Oncotarget, 2016, 7, 86026-86038.	0.8	30
29	PI3K and AKT: Unfaithful Partners in Cancer. International Journal of Molecular Sciences, 2015, 16, 21138-21152.	1.8	208
30	Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis, 2015, 18, 233-244.	3.7	108
31	Tumor heterogeneity and cancer stem cell paradigm: Updates in concept, controversies and clinical relevance. International Journal of Cancer, 2015, 136, 1991-2000.	2.3	112
32	DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. Journal of Clinical Investigation, 2015, 125, 4572-4586.	3.9	145
33	Systemic Buffers in Cancer Therapy: The Example of Sodium Bicarbonate; Stupid Idea or Wise Remedy?. , 2015, 5, .		10
34	PGE2-induced colon cancer growth is mediated by mTORC1. Biochemical and Biophysical Research Communications, 2014, 451, 587-591.	1.0	32
35	Drug-Eluting Beads Loaded with Antiangiogenic Agents for Chemoembolization: In Vitro Sunitinib Loading and Release and In Vivo Pharmacokinetics in an Animal Model. Journal of Vascular and Interventional Radiology, 2014, 25, 379-387.e2.	0.2	31
36	Thoracic Aortic Dilation/Aneurysm in Fabry Disease. American Journal of Medicine, 2013, 126, e23.	0.6	4

OLIVIER DORMOND

#	Article	IF	CITATIONS
37	Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects. Biochemical and Biophysical Research Communications, 2013, 438, 32-37.	1.0	19
38	Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine and Growth Factor Reviews, 2013, 24, 41-49.	3.2	156
39	In vitro and in vivo evaluation of sunitinib eluting beads Journal of Clinical Oncology, 2013, 31, 246-246.	0.8	Ο
40	Evaluation of the antitumoral effect sunitinib eluting beads in VX2 liver tumour in a rabbit model Journal of Clinical Oncology, 2013, 31, 247-247.	0.8	0
41	Mechanotransduction, PROX1, and FOXC2 Cooperate to Control Connexin37 and Calcineurin during Lymphatic-Valve Formation. Developmental Cell, 2012, 22, 430-445.	3.1	339
42	Targeting the intragraft microenvironment and the development of chronic allograft rejection. Human Immunology, 2012, 73, 1261-1268.	1.2	18
43	mTOR Inhibition and the Tumor Vasculature. Current Angiogenesis, 2012, 1, 11-19.	0.1	4
44	Antitumor activities of ATP-competitive inhibitors of mTOR in colon cancer cells. BMC Cancer, 2012, 12, 86.	1.1	39
45	The inhibition of MAPK potentiates the anti-angiogenic efficacy of mTOR inhibitors. Biochemical and Biophysical Research Communications, 2011, 407, 714-719.	1.0	24
46	Targeting the JNK Signaling Pathway Potentiates the Antiproliferative Efficacy of Rapamycin in LS174T Colon Cancer Cells. Journal of Surgical Research, 2011, 167, e193-e198.	0.8	11
47	Targeting renal cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib. Molecular Cancer, 2011, 10, 90.	7.9	60
48	ATP-competitive inhibitors of mTOR: new perspectives in the treatment of renal cell carcinoma. Biochemical Society Transactions, 2011, 39, 492-494.	1.6	7
49	Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers, 2011, 3, 2478-2500.	1.7	44
50	Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Molecular Cancer, 2010, 9, 57.	7.9	77
51	Evidence for a role of sphingosine-1 phosphate in cardiovascular remodelling in Fabry disease. European Heart Journal, 2010, 31, 67-76.	1.0	71
52	Rapamycin-mediated FOXO1 inactivation reduces the anticancer efficacy of rapamycin. Anticancer Research, 2010, 30, 799-804.	0.5	24
53	Calcineurin Inhibitors Activate the Proto-Oncogene Ras and Promote Protumorigenic Signals in Renal Cancer Cells. Cancer Research, 2009, 69, 8902-8909.	0.4	54
54	mTOR—Understanding the Clinical Effects. Transplantation Proceedings, 2008, 40, S9-S12.	0.3	19

OLIVIER DORMOND

#	Article	IF	CITATIONS
55	mTORC2 regulates PGE2-mediated endothelial cell survival and migration. Biochemical and Biophysical Research Communications, 2008, 372, 875-879.	1.0	53
56	CD40-Induced Signaling in Human Endothelial Cells Results in mTORC2- and Akt-Dependent Expression of Vascular Endothelial Growth Factor In Vitro and In Vivo. Journal of Immunology, 2008, 181, 8088-8095.	0.4	45
57	The Effects of mTOR-Akt Interactions on Anti-apoptotic Signaling in Vascular Endothelial Cells. Journal of Biological Chemistry, 2007, 282, 23679-23686.	1.6	125
58	Heme oxygenase-1 modulates the expression of the anti-angiogenic chemokine CXCL-10 in renal tubular epithelial cells. American Journal of Physiology - Renal Physiology, 2007, 293, F1222-F1230.	1.3	17
59	Invited commentary. Annals of Thoracic Surgery, 2006, 81, 1736-1737.	0.7	0
60	Images in Emergency Medicine. Annals of Emergency Medicine, 2005, 45, 586.	0.3	1
61	Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2004, 1654, 51-67.	3.3	62
62	Manganese-induced integrin affinity maturation promotes recruitment of αVβ3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thrombosis and Haemostasis, 2004, 92, 151-161.	1.8	42
63	Zoledronate Sensitizes Endothelial Cells to Tumor Necrosis Factor-induced Programmed Cell Death. Journal of Biological Chemistry, 2003, 278, 43603-43614.	1.6	119
64	Regulation of endothelial cell integrin function and angiogenesis by COX-2, cAMP and Protein Kinase A. Thrombosis and Haemostasis, 2003, 90, 577-585.	1.8	43
65	Prostaglandin E2 Promotes Integrin αVβ3-dependent Endothelial Cell Adhesion, Rac-activation, and Spreading through cAMP/PKA-dependent Signaling. Journal of Biological Chemistry, 2002, 277, 45838-45846.	1.6	132
66	Suppression of Tumor Angiogenesis Through the Inhibition of Integrin Function and Signaling in Endothelial Cells: Which Side to Target?. Endothelium: Journal of Endothelial Cell Research, 2002, 9, 151-160.	1.7	52
67	Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resistance Updates, 2001, 4, 314-321.	6.5	50
68	Suppression of Tumor Angiogenesis by Nonsteroidal Anti-Inflammatory Drugs: A New Function for Old Drugs. Scientific World Journal, The, 2001, 1, 808-811.	0.8	7
69	NSAIDs inhibit αVβ3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nature Medicine, 2001, 7, 1041-1047.	15.2	273
70	Tumor necrosis factor: clinical use and mechanisms of action. Drug Resistance Updates, 2000, 3, 271-276.	6.5	9