List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Phase 2 Study of Bortezomib in Relapsed, Refractory Myeloma. New England Journal of Medicine, 2003, 348, 2609-2617.	27.0	2,460
2	Bortezomib or High-Dose Dexamethasone for Relapsed Multiple Myeloma. New England Journal of Medicine, 2005, 352, 2487-2498.	27.0	2,356
3	Multiple Myeloma. New England Journal of Medicine, 2011, 364, 1046-1060.	27.0	2,109
4	Initial genome sequencing and analysis of multiple myeloma. Nature, 2011, 471, 467-472.	27.8	1,288
5	Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. New England Journal of Medicine, 2015, 373, 621-631.	27.0	1,139
6	Lenalidomide after Stem-Cell Transplantation for Multiple Myeloma. New England Journal of Medicine, 2012, 366, 1770-1781.	27.0	1,024
7	Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood, 2011, 117, 4691-4695.	1.4	849
8	Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood, 2000, 96, 2943-2950.	1.4	844
9	Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. Journal of Immunology, 2011, 186, 1840-1848.	0.8	841
10	NF-κB as a Therapeutic Target in Multiple Myeloma. Journal of Biological Chemistry, 2002, 277, 16639-16647.	3.4	824
11	Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews Cancer, 2007, 7, 585-598.	28.4	817
12	Multiple myeloma. Nature Reviews Disease Primers, 2017, 3, 17046.	30.5	812
13	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	12.8	741
14	Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood, 2016, 127, 2955-2962.	1.4	686
15	Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood, 2002, 99, 4525-4530.	1.4	640
16	A Small Molecule Inhibitor of Ubiquitin-Specific Protease-7 Induces Apoptosis in Multiple Myeloma Cells and Overcomes Bortezomib Resistance. Cancer Cell, 2012, 22, 345-358.	16.8	491
17	Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene, 2001, 20, 5991-6000.	5.9	444
18	Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood, 2008, 112, 1329-1337.	1.4	439

#	Article	IF	CITATIONS
19	Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet, The, 2019, 394, 2096-2107.	13.7	435
20	Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma. JAMA Oncology, 2017, 3, 28.	7.1	405
21	High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 2006, 9, 313-325.	16.8	404
22	The role of tumor necrosis factor $\hat{l}\pm$ in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene, 2001, 20, 4519-4527.	5.9	376
23	The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis. Cancer Cell, 2007, 11, 349-360.	16.8	362
24	Novel anti–B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123, 3128-3138.	1.4	361
25	Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood, 2013, 121, 2975-2987.	1.4	335
26	Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	1.4	335
27	History of the Development of Arsenic Derivatives in Cancer Therapy. Oncologist, 2001, 6, 3-10.	3.7	331
28	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	7.2	313
29	Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 4607-4618.	7.0	271
30	Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood, 2004, 103, 1787-1790.	1.4	266
31	Interleukin-6 Inhibits Fas-Induced Apoptosis and Stress-Activated Protein Kinase Activation in Multiple Myeloma Cells. Blood, 1997, 89, 227-234.	1.4	258
32	Prognostic Significance of Copy-Number Alterations in Multiple Myeloma. Journal of Clinical Oncology, 2009, 27, 4585-4590.	1.6	258
33	Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial. Lancet Oncology, The, 2019, 20, 781-794.	10.7	254
34	Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers. Nature Medicine, 2014, 20, 599-606.	30.7	250
35	APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood, 2016, 127, 3225-3236.	1.4	244
36	Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell, 2009, 16, 309-323.	16.8	242

#	Article	IF	CITATIONS
37	Pathogenesis of Myeloma. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 249-274.	22.4	237
38	Lenalidomide and Thalidomide: Mechanisms of Action—Similarities and Differences. Seminars in Hematology, 2005, 42, S3-S8.	3.4	235
39	The proteasome and proteasome inhibitors in multiple myeloma. Cancer and Metastasis Reviews, 2017, 36, 561-584.	5.9	229
40	Dysfunctional T regulatory cells in multiple myeloma. Blood, 2006, 107, 301-304.	1.4	220
41	Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood, 2003, 102, 4504-4511.	1.4	212
42	Role of B-Cell–Activating Factor in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment. Cancer Research, 2006, 66, 6675-6682.	0.9	212
43	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells <i>In vitro</i> and <i>In vivo</i> . Clinical Cancer Research, 2009, 15, 4028-4037.	7.0	200
44	A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Advances, 2020, 4, 5988-5999.	5.2	198
45	Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 4290-4300.	7.0	192
46	Multiple myeloma. Current Treatment Options in Oncology, 2000, 1, 73-82.	3.0	190
47	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	12.8	183
48	Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene, 1997, 15, 837-843.	5.9	177
49	Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nature Communications, 2021, 12, 868.	12.8	173
50	Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. New England Journal of Medicine, 2022, 387, 132-147.	27.0	173
51	Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting. Blood Cancer Journal, 2018, 8, 109.	6.2	170
52	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	12.8	163
53	Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood, 2012, 120, 1877-1887.	1.4	162
54	Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncology, The, 2017, 18, e653-e706.	10.7	153

#	Article	IF	CITATIONS
55	Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chemical Biology, 2017, 24, 1490-1500.e11.	5.2	149
56	Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy, 2015, 7, 1187-1199.	2.0	146
57	Progress and Paradigms in Multiple Myeloma. Clinical Cancer Research, 2016, 22, 5419-5427.	7.0	142
58	Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood, 2016, 128, 1590-1603.	1.4	139
59	Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood, 2014, 124, 1404-1411.	1.4	138
60	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2018, 32, 2604-2616.	7.2	137
61	Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncology, The, 2021, 22, e105-e118.	10.7	136
62	Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Experimental Hematology, 2007, 35, 155-162.	0.4	135
63	RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells. Oncogene, 1999, 18, 6733-6740.	5.9	129
64	Outcomes of patients with hematologic malignancies and COVID-19: a report from the ASH Research Collaborative Data Hub. Blood Advances, 2020, 4, 5966-5975.	5.2	124
65	Clonal architecture of <i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like mutations in Waldenström Macroglobulinaemia. British Journal of Haematology, 2016, 172, 735-744.	2.5	122
66	Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: <scp>ELOQUENT</scp> â€2 followâ€up and <i>postâ€hoc</i> analyses on progressionâ€free survival and tumour growth. British Journal of Haematology, 2017, 178, 896-905.	2.5	120
67	The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nature Reviews Clinical Oncology, 2018, 15, 219-233.	27.6	120
68	Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic antiâ€myeloma activity <i>in vitro</i> and <i>in vivo</i> . British Journal of Haematology, 2010, 149, 537-549.	2.5	119
69	A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplantâ€ineligible multiple myeloma. British Journal of Haematology, 2018, 182, 222-230.	2.5	118
70	Prophylactic versus therapeutic platelet transfusion practices in hematology and/or oncology patients. Transfusion, 1995, 35, 498-502.	1.6	113
71	Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13162-13167.	7.1	112
72	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	1.6	110

#	Article	IF	CITATIONS
73	Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood, 2007, 110, 1656-1663.	1.4	106
74	Timing the initiation of multiple myeloma. Nature Communications, 2020, 11, 1917.	12.8	99
75	Autologous Transplantation for Multiple Myeloma in the Era of New Drugs: A Phase III Study of the Intergroupe Francophone Du Myelome (IFM/DFCI 2009 Trial). Blood, 2015, 126, 391-391.	1.4	99
76	Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood, 2014, 123, 632-639.	1.4	98
77	Novel therapeutic strategies for multiple myeloma. Experimental Hematology, 2015, 43, 732-741.	0.4	98
78	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	12.8	98
79	Melflufen and Dexamethasone in Heavily Pretreated Relapsed and Refractory Multiple Myeloma. Journal of Clinical Oncology, 2021, 39, 757-767.	1.6	98
80	Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discovery, 2015, 5, 972-987.	9.4	97
81	A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clinical Cancer Research, 2016, 22, 1222-1233.	7.0	96
82	Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia, 2018, 32, 1932-1947.	7.2	95
83	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	4.1	94
84	The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Reports, 2017, 19, 218-224.	6.4	92
85	Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood, 2016, 128, 827-838.	1.4	91
86	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	1.4	89
87	Inhibition of USP10 induces degradation of oncogenic FLT3. Nature Chemical Biology, 2017, 13, 1207-1215.	8.0	89
88	The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nature Communications, 2016, 7, 10258.	12.8	87
89	<i>In Vitro</i> and <i>In Vivo</i> Antitumor Activity of a Novel Alkylating Agent, Melphalan-Flufenamide, against Multiple Myeloma Cells. Clinical Cancer Research, 2013, 19, 3019-3031.	7.0	86
90	Promising therapies in multiple myeloma. Blood, 2015, 126, 300-310.	1.4	86

#	Article	IF	CITATIONS
91	Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update. Journal of Clinical Oncology, 2018, 36, 812-818.	1.6	85
92	A phase 1b study of isatuximab plus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma. Blood, 2019, 134, 123-133.	1.4	82
93	Revealing the Impact of Structural Variants in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 258-273.	5.0	81
94	MDM2 Protein Overexpression Promotes Proliferation and Survival of Multiple Myeloma Cells. Blood, 1997, 90, 1982-1992.	1.4	80
95	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	30.7	79
96	The Impact of Clone Size on the Prognostic Value of Chromosome Aberrations by Fluorescence <i>In Situ</i> Hybridization in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 2148-2156.	7.0	76
97	Targeting the miR-221–222/PUMA/BAK/BAX Pathway Abrogates Dexamethasone Resistance in Multiple Myeloma. Cancer Research, 2015, 75, 4384-4397.	0.9	76
98	Rational design of a trimeric APRIL-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Advances, 2019, 3, 3248-3260.	5.2	76
99	Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers, 2019, 11, 66.	3.7	73
100	Multiple myeloma: the (r)evolution of current therapy and a glance into future. Haematologica, 2020, 105, 2358-2367.	3.5	73
101	Moving disease biology from the lab to the clinic. Cancer, 2003, 97, 796-801.	4.1	72
102	Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Advances, 2018, 2, 2937-2946.	5.2	72
103	MUC1-C drives MYC in multiple myeloma. Blood, 2016, 127, 2587-2597.	1.4	71
104	Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clinical Cancer Research, 2017, 23, 4280-4289.	7.0	71
105	The Role of Minimal Residual Disease Testing in Myeloma Treatment Selection and Drug Development: Current Value and Future Applications. Clinical Cancer Research, 2017, 23, 3980-3993.	7.0	71
106	Early Versus Late Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma: Long-Term Follow-up Analysis of the IFM 2009 Trial. Blood, 2020, 136, 39-39.	1.4	70
107	B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opinion on Biological Therapy, 2019, 19, 1143-1156.	3.1	69
108	Cell surface expression and functional significance of adhesion molecules on human myeloma-derived cell lines. British Journal of Haematology, 1994, 87, 483-493.	2.5	68

#	Article	IF	CITATIONS
109	Expert review on softâ€tissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations. British Journal of Haematology, 2021, 194, 496-507.	2.5	67
110	Myeloma-Specific Multiple Peptides Able to Generate Cytotoxic T Lymphocytes: A Potential Therapeutic Application in Multiple Myeloma and Other Plasma Cell Disorders. Clinical Cancer Research, 2012, 18, 4850-4860.	7.0	66
111	Development of extramedullary myeloma in the era of novel agents: no evidence of increased risk with lenalidomide–bortezomib combinations. British Journal of Haematology, 2015, 169, 843-850.	2.5	66
112	Indatuximab Ravtansine (BT062) Monotherapy in Patients With Relapsed and/or Refractory Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 372-380.	0.4	66
113	A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma. Clinical Cancer Research, 2020, 26, 344-353.	7.0	66
114	Melflufen - a peptidase-potentiated alkylating agent in clinical trials. Oncotarget, 2017, 8, 66641-66655.	1.8	65
115	Isatuximab plus pomalidomide/dexamethasone versus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma: ICARIA Phase III study design. Future Oncology, 2018, 14, 1035-1047.	2.4	65
116	Melflufen plus dexamethasone in relapsed and refractory multiple myeloma (O-12-M1): a multicentre, international, open-label, phase 1–2 study. Lancet Haematology,the, 2020, 7, e395-e407.	4.6	65
117	Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Frontiers in Immunology, 2020, 11, 1771.	4.8	64
118	Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discovery, 2021, 2, 468-483.	5.0	64
119	Activation signals regulate heat shock transcription factor 1 in human B lymphocytes. , 1997, 170, 235-240.		63
120	Selective and Potent Akt Inhibition Triggers Anti-Myeloma Activities and Enhances Fatal Endoplasmic Reticulum Stress Induced by Proteasome Inhibition. Cancer Research, 2014, 74, 4458-4469.	0.9	63
121	Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. British Journal of Haematology, 2015, 169, 851-858.	2.5	63
122	A genome-scale CRISPR-Cas9 screening in myeloma cells identifies regulators of immunomodulatory drug sensitivity. Leukemia, 2019, 33, 171-180.	7.2	62
123	Adenovirus Vector-Based Purging of Multiple Myeloma Cells. Blood, 1998, 92, 4591-4601.	1.4	61
124	APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia, 2019, 33, 426-438.	7.2	59
125	A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood, 2016, 128, 249-252.	1.4	58
126	The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood, 2020, 136, 2334-2345.	1.4	58

#	Article	IF	CITATIONS
127	SLC46A3 as a Potential Predictive Biomarker for Antibody–Drug Conjugates Bearing Noncleavable Linked Maytansinoid and Pyrrolobenzodiazepine Warheads. Clinical Cancer Research, 2018, 24, 6570-6582.	7.0	56
128	Oncogenomics to Target Myeloma in the Bone Marrow Microenvironment. Clinical Cancer Research, 2011, 17, 1225-1233.	7.0	54
129	Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. Journal of Controlled Release, 2014, 196, 113-121.	9.9	54
130	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	1.4	54
131	Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): follow-up analysis of a randomised, phase 3 study. Lancet Oncology, The, 2022, 23, 416-427.	10.7	54
132	Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. International Journal of Hematology, 2016, 104, 300-309.	1.6	52
133	Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia, 2021, 35, 752-763.	7.2	52
134	Pyk2 promotes tumor progression in multiple myeloma. Blood, 2014, 124, 2675-2686.	1.4	51
135	A novel alkylating agent Melflufen induces irreversible <scp>DNA</scp> damage and cytotoxicity in multiple myeloma cells. British Journal of Haematology, 2016, 174, 397-409.	2.5	49
136	Long intergenic non-coding RNAs have an independent impact on survival in multiple myeloma. Leukemia, 2018, 32, 2626-2635.	7.2	48
137	Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia, 2020, 34, 196-209.	7.2	48
138	Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Frontiers in Immunology, 2018, 9, 1822.	4.8	46
139	A novel 3D mesenchymal stem cell model of the multiple myeloma bone marrow niche: biologic and clinical applications. Oncotarget, 2016, 7, 77326-77341.	1.8	45
140	Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. Journal of Clinical Oncology, 2020, 38, 3107-3118.	1.6	45
141	A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia, 2020, 34, 2150-2162.	7.2	45
142	Anti-B4-blocked ricin: a phase II trial of 7 day continuous infusion in patients with multiple myeloma. British Journal of Haematology, 1998, 102, 509-515.	2.5	44
143	Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematology,the, 2022, 9, e143-e161.	4.6	44
144	Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function. Blood, 2012, 119, 2074-2082.	1.4	43

#	Article	IF	CITATIONS
145	Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia, 2018, 32, 1838-1841.	7.2	42
146	Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. American Journal of Hematology, 2019, 94, 1244-1253.	4.1	42
147	Phase II Trial of the Combination of Ixazomib, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2018, 132, 804-804.	1.4	42
148	Synergistic anti-myeloma activity of the proteasome inhibitor marizomib and the IMiD [®] immunomodulatory drug pomalidomide. British Journal of Haematology, 2015, 171, 798-812.	2.5	41
149	A novel immunogenic <scp>CS</scp> 1â€specific peptide inducing antigenâ€specific cytotoxic <scp>T</scp> lymphocytes targeting multiple myeloma. British Journal of Haematology, 2012, 157, 687-701.	2.5	40
150	BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers, 2020, 12, 1473.	3.7	40
151	The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Advances, 2020, 4, 4195-4207.	5.2	39
152	Risks, Costs, and Alternatives to Platelet Transfusions. Leukemia and Lymphoma, 1999, 34, 71-84.	1.3	38
153	Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer Journal, 2019, 9, 39.	6.2	38
154	Arsenic Trioxide in Multiple Myeloma. Cancer Journal (Sudbury, Mass), 2002, 8, 12-25.	2.0	37
155	Immunomodulatory drugs activate NK cells via both Zap-70 and cereblon-dependent pathways. Leukemia, 2021, 35, 177-188.	7.2	37
156	Mutational Profile and Prognostic Relevance of Circulating Tumor Cells in Multiple Myeloma. Blood, 2015, 126, 23-23.	1.4	37
157	p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood, 2017, 129, 1308-1319.	1.4	36
158	Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Cancer Research, 2020, 80, 2031-2044.	0.9	36
159	Signaling Pathway Mediating Myeloma Cell Growth and Survival. Cancers, 2021, 13, 216.	3.7	36
160	A Green Tea Polyphenol, Epigallocatechin-3-Gallate, Induces Selective Apoptosis in Multiple Myeloma Cells: Mechanism of Action and Therapeutic Potential Blood, 2005, 106, 1590-1590.	1.4	36
161	Evaluation of the Specificity and Cytotoxicity of Three Proteasome Inhibitors Blood, 2005, 106, 3366-3366.	1.4	36
162	Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein <scp>MUC</scp> 1. British Journal of Haematology, 2017, 176, 929-938.	2.5	34

#	Article	IF	CITATIONS
163	Overcoming multiple myeloma drug resistance in the era of cancer â€~omics'. Leukemia and Lymphoma, 2018, 59, 542-561.	1.3	34
164	Development and preclinical validation of a novel covalent ubiquitin receptor Rpn13 degrader in multiple myeloma. Leukemia, 2019, 33, 2685-2694.	7.2	34
165	The role of immunomodulatory drugs in multiple myeloma. Seminars in Hematology, 2003, 40, 23-32.	3.4	33
166	Biomarkers of Bone Remodeling in Multiple Myeloma Patients to Tailor Bisphosphonate Therapy. Clinical Cancer Research, 2014, 20, 3955-3961.	7.0	33
167	Retrospective matched-pairs analysis of bortezomib plus dexamethasone versus bortezomib monotherapy in relapsed multiple myeloma. Haematologica, 2015, 100, 100-106.	3.5	33
168	Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood, 2017, 129, 2233-2245.	1.4	33
169	The power of proteasome inhibition in multiple myeloma. Expert Review of Proteomics, 2018, 15, 1033-1052.	3.0	33
170	Investigational agents in immunotherapy: a new horizon for the treatment of multiple myeloma. British Journal of Haematology, 2018, 181, 433-446.	2.5	33
171	Humanistic and economic impact of subcutaneous versus intravenous administration of oncology biologics. Future Oncology, 2019, 15, 3267-3281.	2.4	33
172	Monoclonal Antibody-Purged Bone Marrow Transplantation Therapy for Multiple Myeloma. Leukemia and Lymphoma, 1995, 17, 87-93.	1.3	32
173	The impact of response kinetics for multiple myeloma in the era of novel agents. Blood Advances, 2019, 3, 2895-2904.	5.2	32
174	Indatuximab Ravtansine (BT062) in Combination with Lenalidomide and Low-Dose Dexamethasone in Patients with Relapsed and/or Refractory Multiple Myeloma: Clinical Activity in Patients Already Exposed to Lenalidomide and Bortezomib. Blood, 2014, 124, 4736-4736.	1.4	31
175	Compartment-Specific Bioluminescence Imaging (CS-BLI) High- Throughput Assays Provide Comparative Insights into the Impact of Osteoclasts Vs. Stromal Cells on Activity of Anti-Myeloma Therapeutics. Blood, 2008, 112, 219-219.	1.4	31
176	Recombinant human erythropoietin for the treatment of the anaemia associated with autologous bone marrow transplantation. British Journal of Haematology, 1994, 87, 153-161.	2.5	30
177	The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer Journal, 2018, 8, 83.	6.2	30
178	Elotuzumab monotherapy in patients with smouldering multiple myeloma: a phase 2 study. British Journal of Haematology, 2018, 182, 495-503.	2.5	30
179	BT062, An Antibody-Drug Conjugate Directed Against CD138, Shows Clinical Activity in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 305-305.	1.4	30
180	Targeting Mcl-1 for multiple myeloma (MM) therapy: Drug-induced generation of Mcl-1 fragment Mcl-1128–350 triggers MM cell death via c-Jun upregulation. Cancer Letters, 2014, 343, 286-294.	7.2	29

#	Article	IF	CITATIONS
181	A Phase I/II Study of Evofosfamide, A Hypoxia-activated Prodrug with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Clinical Cancer Research, 2019, 25, 478-486.	7.0	29
182	Therapeutic Advances in Relapsed or Refractory Multiple Myeloma. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 676-679.	4.9	28
183	Prognostic Validation of SKY92 and Its Combination With ISS in an Independent Cohort of Patients With Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 555-562.	0.4	28
184	VIS832, a novel CD138-targeting monoclonal antibody, potently induces killing of human multiple myeloma and further synergizes with IMiDs or bortezomib in vitro and in vivo. Blood Cancer Journal, 2020, 10, 110.	6.2	28
185	Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia, 2022, 36, 138-154.	7.2	28
186	Phase 1 Clinical Evaluation of Twice-Weekly Marizomib (NPI-0052), a Novel Proteasome Inhibitor, in Patients with Relapsed/Refractory Multiple Myeloma (MM). Blood, 2011, 118, 302-302.	1.4	28
187	Preclinical Studies of Salinomycin In Multiple Myeloma (MM) Models: Targeting of Side Population (SP) Cells In the Context of Tumor – Microenvironment Interactions Blood, 2010, 116, 1574-1574.	1.4	28
188	Novel epitope evoking CD138 antigenâ€specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. British Journal of Haematology, 2011, 155, 349-361.	2.5	26
189	Realgar nanoparticles <i>versus </i> <scp>ATO</scp> arsenic compounds induce <i>inÂvitro</i> and <i>inÂvivo</i> activity <i>against</i> multiple myeloma. British Journal of Haematology, 2017, 179, 756-771.	2.5	26
190	Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene, 2020, 39, 2786-2796.	5.9	26
191	Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clinical Cancer Research, 2021, 27, 5195-5212.	7.0	26
192	Phase I Trial of CCI-779 (Temsirolimus) and Weekly Bortezomib in Relapsed and/or Refractory Multiple Myeloma. Blood, 2008, 112, 3696-3696.	1.4	26
193	SL-401, a Novel Targeted Therapy Directed to the Interleukin-3 Receptor (IL-3R), Blocks Plasmacytoid Dendritic Cell (pDC)-Triggered Myeloma Cell Growth and Prevents Osteoclastogenesis. Blood, 2014, 124, 3441-3441.	1.4	26
194	Promising Antigens for the New Frontier of Targeted Immunotherapy in Multiple Myeloma. Cancers, 2021, 13, 6136.	3.7	26
195	Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clinical Cancer Research, 2017, 23, 5225-5237.	7.0	25
196	Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients. Blood, 2014, 124, 638-638.	1.4	25
197	Interleukin-6 Overcomes p21WAF1 Upregulation and G1 Growth Arrest Induced by Dexamethasone and Interferon-Î ³ in Multiple Myeloma Cells. Blood, 1997, 90, 279-289.	1.4	25
198	BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice. Journal of Experimental Medicine, 2016, 213, 1705-1722.	8.5	24

#	Article	IF	CITATIONS
199	Interferon-alpha-based immunotherapies in the treatment of B cell-derived hematologic neoplasms in today's treat-to-target era. Experimental Hematology and Oncology, 2017, 6, 20.	5.0	24
200	Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia. Clinical Cancer Research, 2019, 25, 369-377.	7.0	24
201	Cisplatin-Mediated Upregulation of APE2 Binding to MYH9 Provokes Mitochondrial Fragmentation and Acute Kidney Injury. Cancer Research, 2021, 81, 713-723.	0.9	24
202	Perspectives on the Risk-Stratified Treatment of Multiple Myeloma. Blood Cancer Discovery, 2022, 3, 273-284.	5.0	24
203	Delineating the mTOR Kinase Pathway Using a Dual TORC1/2 Inhibitor, AZD8055, in Multiple Myeloma. Molecular Cancer Therapeutics, 2014, 13, 2489-2500.	4.1	23
204	<i>CCR</i> 20th Anniversary Commentary: In the Beginning, There Was PS-341. Clinical Cancer Research, 2015, 21, 939-941.	7.0	23
205	Non-overlapping Control of Transcriptome by Promoter- and Super-Enhancer-Associated Dependencies in Multiple Myeloma. Cell Reports, 2018, 25, 3693-3705.e6.	6.4	23
206	Vorinostat Plus Bortezomib for the Treatment of Relapsed/Refractory Multiple Myeloma: Early Clinical Experience. Blood, 2008, 112, 871-871.	1.4	23
207	Serine/Threonine Kinase STK4 Is a Novel Target in Myeloma. Blood, 2014, 124, 645-645.	1.4	23
208	Induction of tumour cell apoptosis by matrix metalloproteinase inhibitors: new tricks from a (not so) old drug. Expert Opinion on Investigational Drugs, 2001, 10, 1075-1084.	4.1	22
209	Polycomb-like Protein 3 Induces Proliferation and Drug Resistance in Multiple Myeloma and Is Regulated by miRNA-15a. Molecular Cancer Research, 2020, 18, 1063-1073.	3.4	22
210	Updated Follow-up and Results of Subsequent Therapy in the Phase III VISTA Trial: Bortezomib Plus Melphalan–Prednisone Versus Melphalan–Prednisone in Newly Diagnosed Multiple Myeloma. Blood, 2008, 112, 650-650.	1.4	22
211	Eloquent-2 Update: A Phase 3, Randomized, Open-Label Study of Elotuzumab in Combination with Lenalidomide/Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma - 3-Year Safety and Efficacy Follow-up. Blood, 2015, 126, 28-28.	1.4	22
212	Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma. Nature Cell Biology, 2021, 23, 1199-1211.	10.3	22
213	Interleukinâ€6 is Required for Pristaneâ€Induced Plasma Cell Hyperplasia In Mice. British Journal of Haematology, 1996, 94, 53-61.	2.5	21
214	Heteroclitic XBP1 peptides evoke tumor-specific memory cytotoxic T lymphocytes against breast cancer, colon cancer, and pancreatic cancer cells. Oncolmmunology, 2014, 3, e970914.	4.6	21
215	Vantage 095: Vorinostat in Combination with Bortezomib in Salvage Multiple Myeloma Patients: Final Study Results of a Global Phase 2b Trial. Blood, 2011, 118, 480-480.	1.4	21
216	Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0143847.	2.5	20

#	Article	IF	CITATIONS
217	<scp>MUC</scp> 1 is a target in lenalidomide resistant multiple myeloma. British Journal of Haematology, 2017, 178, 914-926.	2.5	20
218	Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia, 2020, 34, 567-577.	7.2	20
219	Prospective Evaluation of MRI and PET-CT at Diagnosis and before Maintenance Therapy in Symptomatic Patients with Multiple Myeloma Included in the IFM/DFCI 2009 Trial. Blood, 2015, 126, 395-395.	1.4	20
220	Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clinical Cancer Research, 2016, 22, 6099-6109.	7.0	19
221	Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma. Blood Cancer Discovery, 2021, 2, 370-387.	5.0	19
222	AMG 701 Potently Induces Anti-Multiple Myeloma (MM) Functions of T Cells and IMiDs Further Enhance Its Efficacy to Prevent MM Relapse In Vivo. Blood, 2019, 134, 135-135.	1.4	19
223	The Combination of Bortezomib and NPI-0052 Exerts Anti-Tumor Activity in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 1516-1516.	1.4	19
224	Preliminary Results from a Phase Ib Study of Isatuximab in Combination with Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma. Blood, 2016, 128, 2123-2123.	1.4	19
225	A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1609-1618.	2.5	18
226	Approach to the treatment of the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a US hematologist and a geriatric hematologist. Hematology American Society of Hematology Education Program, 2018, 2018, 88-96.	2.5	18
227	Single-Cell Profiling Reveals Metabolic Reprogramming as a Resistance Mechanism in <i>BRAF</i> -Mutated Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6432-6444.	7.0	18
228	A Phase IB, Multicenter, Open-Label, Dose-Escalation Study of Oral Panobinostat (LBH589) and I.V. Bortezomib in Patients with Relapsed Multiple Myeloma. Blood, 2008, 112, 2781-2781.	1.4	17
229	Prospective, Multicenter Study of the MTOR Inhibitor Everolimus (RAD001) As Primary Therapy in Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 2951-2951.	1.4	17
230	Phase II Trial of Combination of Elotuzumab, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2016, 128, 976-976.	1.4	17
231	Continued Overall Survival Benefit After 5 Years' Follow-up with Bortezomib-Melphalan-Prednisone (VMP) Versus Melphalan-Prednisone (MP) in Patients with Previously Untreated Multiple Myeloma, and No Increased Risk of Second Primary Malignancies: Final Results of the Phase 3 VISTA Trial. Blood, 2011, 118, 476-476.	1.4	16
232	Vantage 088: Vorinostat in Combination with Bortezomib in Patients with Relapsed/Refractory Multiple Myeloma: Results of a Global, Randomized Phase 3 Trial. Blood, 2011, 118, 811-811.	1.4	16
233	Final Results of Phase I/II Trial of the Oral mTOR Inhibitor Everolimus (RAD001) in Combination with Bortezomib and Rituximab (RVR) in Relapsed or Refractory Waldenstrom Macroglobulinemia. Blood, 2014, 124, 3081-3081.	1.4	16
234	Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Advances, 2022, 6, 429-440.	5.2	16

#	Article	IF	CITATIONS
235	HLA Homozygosity and Shared HLA Haplotypes in the Development of Transfusion-Associated Graft-Versus-Host Disease. Leukemia and Lymphoma, 1994, 15, 227-234.	1.3	15
236	Lenalidomide and Thalidomide: An Evolving Paradigm for the Management of Multiple Myeloma. Seminars in Hematology, 2005, 42, S1-S2.	3.4	15
237	Novel Targeted Agents in the Treatment of Multiple Myeloma. Hematology/Oncology Clinics of North America, 2014, 28, 903-925.	2.2	15
238	Indatuximab ravtansine plus dexamethasone with lenalidomide or pomalidomide in relapsed or refractory multiple myeloma: a multicentre, phase 1/2a study. Lancet Haematology,the, 2021, 8, e794-e807.	4.6	15
239	TH17 Pathway and Associated Pro-Inflammatory Cytokines Promote Immune Dysfunction in Myeloma Blood, 2007, 110, 3517-3517.	1.4	15
240	Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine, 2022, 78, 103950.	6.1	15
241	A strategic framework for novel drug development in multiple myeloma. British Journal of Haematology, 2007, 138, 153-159.	2.5	14
242	IKKÎ ² inhibitor in combination with bortezomib induces cytotoxicity in breast cancer cells. International Journal of Oncology, 2014, 44, 1171-1176.	3.3	14
243	Platelet Transfusion for Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update Summary. Journal of Oncology Practice, 2018, 14, 129-133.	2.5	14
244	<p>Immunotherapeutic and Targeted Approaches in Multiple Myeloma</p> . ImmunoTargets and Therapy, 2020, Volume 9, 201-215.	5.8	14
245	BCMA-Specific ADC MEDI2228 and Daratumumab Induce Synergistic Myeloma Cytotoxicity via IFN-Driven Immune Responses and Enhanced CD38 Expression. Clinical Cancer Research, 2021, 27, 5376-5388.	7.0	14
246	A 3Dâ€Bioprinted Multiple Myeloma Model. Advanced Healthcare Materials, 2022, 11, e2100884.	7.6	14
247	Phase Ib Study of the Novel Anti-CXCR4 Antibody Ulocuplumab (BMS-936564) in Combination with Lenalidomide Plus Low-Dose Dexamethasone, or with Bortezomib plus Dexamethasone in Subjects with Relapsed or Refractory Multiple Myeloma. Blood, 2014, 124, 3483-3483.	1.4	14
248	Histone Deacetylase Inhibitors Demonstrate Significant Preclinical Activity as Single Agents, and in Combination with Bortezomib in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 4785-4785.	1.4	14
249	Blockade of ubiquitin receptor Rpn13 in plasmacytoid dendritic cells triggers anti-myeloma immunity. Blood Cancer Journal, 2019, 9, 64.	6.2	13
250	Facts and Hopes in Multiple Myeloma Immunotherapy. Clinical Cancer Research, 2021, 27, 4468-4477.	7.0	13
251	Bortezomib Induces Proliferation of Mesenchymal Progenitor Cells and Promotes Differentiation towards Osteoblastic Lineage Blood, 2006, 108, 88-88.	1.4	13
252	Targeting CD38 alleviates tumor-induced immunosuppression. Oncotarget, 2017, 8, 112166-112167.	1.8	13

#	Article	IF	CITATIONS
253	Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma. Leukemia, 2022, 36, 1078-1087.	7.2	13
254	Immunotherapy Strategies in Multiple Myeloma. Hematology/Oncology Clinics of North America, 2014, 28, 927-943.	2.2	12
255	Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma. Antibodies, 2017, 6, 18.	2.5	12
256	Daratumumab Directly Induces Human Multiple Myeloma Cell Death and Acts Synergistically with Conventional and Novel Anti-Myeloma Drugs. Blood, 2010, 116, 3013-3013.	1.4	12
257	MM-005: A Phase 1 Trial Of Pomalidomide, Bortezomib, and Low-Dose Dexamethasone (PVD) In Relapsed and/Or Refractory Multiple Myeloma (RRMM). Blood, 2013, 122, 1969-1969.	1.4	12
258	SAR 650984, a Therapeutic Anti-CD38 Monoclonal Antibody, Blocks CD38-CD31 Interaction in Multiple Myeloma. Blood, 2014, 124, 4729-4729.	1.4	12
259	A Phase 1, Multicenter Study of Pomalidomide, Bortezomib, and Low-Dose Dexamethasone in Patients with Proteasome Inhibitor Exposed and Lenalidomide-Refractory Myeloma (Trial MM-005). Blood, 2015, 126, 3036-3036.	1.4	12
260	Plasmacytoid Dendritic Cells Induce Growth and Survival of Multiple Myeloma Cells: Therapeutic Application Blood, 2007, 110, 3507-3507.	1.4	12
261	Genome Wide DNA Methylation Profiling In Patients with Multiple Myeloma Blood, 2010, 116, 3622-3622.	1.4	12
262	A Novel Small Molecule Inhibitor Of Deubiquitylating Enzyme USP14 and UCHL5 Induces Apoptosis In Myeloma Cells and Overcomes Bortezomib Resistance. Blood, 2013, 122, 1923-1923.	1.4	12
263	Quality of life, psychological distress, and prognostic perceptions in patients with multiple myeloma. Cancer, 2022, 128, 1996-2004.	4.1	12
264	Bone marrow biopsy in lowâ€risk monoclonal gammopathy of undetermined significance reveals a novel smoldering multiple myeloma risk group. American Journal of Hematology, 2019, 94, E146-E149.	4.1	11
265	The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia, 2020, 34, 167-179.	7.2	11
266	Proteomic analysis identifies mechanism(s) of overcoming bortezomib resistance via targeting ubiquitin receptor Rpn13. Leukemia, 2021, 35, 550-561.	7.2	11
267	ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Science Advances, 2021, 7, .	10.3	11
268	High-Dose Melphalan Significantly Increases Mutational Burden in Multiple Myeloma Cells at Relapse: Results from a Randomized Study in Multiple Myeloma. Blood, 2020, 136, 4-5.	1.4	11
269	Serum Free Light Chain in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2420-2420.	1.4	11
270	Lack of Response to Vaccination in MGUS and Stable Myeloma Blood, 2009, 114, 1852-1852.	1.4	11

#	Article	IF	CITATIONS
271	Final Analysis of Overall Survival from the First Trial. Blood, 2016, 128, 241-241.	1.4	11
272	ASH Research Collaborative: a real-world data infrastructure to support real-world evidence development and learning healthcare systems in hematology. Blood Advances, 2021, 5, 5429-5438.	5.2	11
273	Clonal phylogeny and evolution of critical cytogenetic aberrations in multiple myeloma at single-cell level by QM-FISH. Blood Advances, 2022, 6, 441-451.	5.2	11
274	IgM-MM is predominantly a pre–germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood, 2021, 138, 1980-1985.	1.4	11
275	Proteasome Inhibitors in Multiple Myeloma. Seminars in Oncology, 2009, 36, S20-S26.	2.2	10
276	Clinical utility of Câ€ŧerminal telopeptide of type 1 collagen in multiple myeloma. British Journal of Haematology, 2016, 173, 82-88.	2.5	10
277	Lenalidomide in combination or alone as maintenance therapy following autologous stem cell transplant in patients with multiple myeloma: a review of options for and against. Expert Opinion on Pharmacotherapy, 2017, 18, 1975-1985.	1.8	10
278	Should minimal residual disease negativity be the end point of myeloma therapy?. Blood Advances, 2017, 1, 517-521.	5.2	10
279	Role of Bone-Modifying Agents in Multiple Myeloma: American Society of Clinical Oncology Clinical Practice Guideline Update Summary. Journal of Oncology Practice, 2018, 14, 266-269.	2.5	10
280	Biallelic Loss of BCMA Triggers Resistance to Anti-BCMA CAR T Cell Therapy in Multiple Myeloma. Blood, 2020, 136, 14-14.	1.4	10
281	A Phase I, Multi-Center, Dose Escalation Study of Atiprimod in Patients with Refractory or Relapsed Multiple Myeloma (MM) Blood, 2005, 106, 111-111.	1.4	10
282	Final Results of a Phase I Trial of Oral Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) in Patients with Advanced Multiple Myeloma Blood, 2007, 110, 1179-1179.	1.4	10
283	A Phase II Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVD lite) for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Blood, 2014, 124, 3454-3454.	1.4	10
284	Blockade of PD-1 in Combination with Dendritic Cell/Myeloma Fusion Cell Vaccination Following Autologous Stem Cell Transplantation Is Well Tolerated, Induces Anti-Tumor Immunity and May Lead to Eradication of Measureable Disease. Blood, 2015, 126, 4218-4218.	1.4	10
285	BCMA CAR T-cell therapy arrives for multiple myeloma: a reality. Annals of Translational Medicine, 2018, 6, S93-S93.	1.7	10
286	Activity of CDK1/2 Inhibitor LCQ195 Against Multiple Myeloma Cells Blood, 2007, 110, 1519-1519.	1.4	10
287	Sulforaphane and PEITC Augment Activity of Conventional and Novel Anti-Myeloma Drugs. Blood, 2008, 112, 2648-2648.	1.4	10
288	RNA-Seq De Novo Assembly of Clonal Immunoglobulin Rearrangements Identifies Interesting Biology and Uncovers Prognostic Features in Multiple Myeloma. Blood, 2016, 128, 195-195.	1.4	10

KENNETH C ANDERSON

#	Article	IF	CITATIONS
289	Functional dissection of inherited non-coding variation influencing multiple myeloma risk. Nature Communications, 2022, 13, 151.	12.8	10
290	Autologous peripheral blood progenitor cell transplantation. Journal of Clinical Apheresis, 1995, 10, 131-138.	1.3	9
291	Awakening the Hippo co-activator YAP1, a mercurial cancer gene, in hematologic cancers. Molecular and Cellular Oncology, 2014, 1, e970055.	0.7	9
292	Multiple Myeloma. Hematology/Oncology Clinics of North America, 2014, 28, xi-xii.	2.2	9
293	Phase II Trial of Single Agent Panobinostat (LBH589) In Relapsed or Relapsed/Refractory Waldenstrom Macroglobulinemia. Blood, 2010, 116, 3952-3952.	1.4	9
294	Randomized, Open Label Phase 1/2 Study of Pomalidomide (POM) Alone or in Combination with Low-Dose Dexamethasone (LoDex) in Patients (Pts) with Relapsed and Refractory Multiple Myeloma Who Have Received Prior Treatment That Includes Lenalidomide (LEN) and Bortezomib (BORT): Phase 2 Results. Blood, 2011, 118, 634-634.	1.4	9
295	Identification and validation of ecto-5' nucleotidase as an immunotherapeutic target in multiple myeloma. Blood Cancer Journal, 2022, 12, 50.	6.2	9
296	YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 2020, 136, 468-479.	1.4	8
297	Identification of novel anti-tumor therapeutic target via proteomic characterization of ubiquitin receptor ADRM1/Rpn13. Blood Cancer Journal, 2021, 11, 13.	6.2	8
298	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	5.0	8
299	PKC412 Is a Multi-Targeting Kinase Inhibitor with Activity Against Multiple Myeloma In Vitro and In Vivo Blood, 2005, 106, 247-247.	1.4	8
300	A Phase II Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVD-lite) for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Blood, 2015, 126, 4217-4217.	1.4	8
301	Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget, 2017, 8, 69237-69249.	1.8	8
302	Kaposi's sarcoma-associated herpesvirus gene sequences are detectable at low copy number in primary amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2000, 7, 126-132.	3.0	7
303	Identifying Professional Education Gaps and Barriers in Multiple Myeloma Patient Care: Findings of the Managing Myeloma Continuing Educational Initiative Advisory Committee. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 356-369.	0.4	7
304	The orally available multikinase inhibitor regorafenib (BAY 73-4506) in multiple myeloma. Annals of Hematology, 2018, 97, 839-849.	1.8	7
305	Promise of Immune Therapies in Multiple Myeloma. Journal of Oncology Practice, 2018, 14, 411-413.	2.5	7
306	Treatment approach for the older, unfit patient with myeloma from diagnosis to relapse: perspectives of a European hematologist. Hematology American Society of Hematology Education Program, 2018, 2018, 83-87.	2.5	7

#	Article	IF	CITATIONS
307	Proteomics-inspired precision medicine for treating and understanding multiple myeloma. Expert Review of Precision Medicine and Drug Development, 2020, 5, 67-85.	0.7	7
308	Primary Plasma Cell Leukemia: Real-World Retrospective Study of 46 Patients From a Single-Center Study in China. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e652-e659.	0.4	7
309	Defibrotide (DF) Targets Tumor-Microenvironmental Interactions and Sensitizes Multiple Myeloma and Solid Tumor Cells to Cytotoxic Chemotherapeutics Blood, 2004, 104, 286-286.	1.4	7
310	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia. Blood, 2008, 112, 832-832.	1.4	7
311	Phase 1, Multicenter, Open-Label, Combination Study (NPI-0052-107; NCT02103335) of Pomalidomide (POM), Marizomib (MRZ, NPI-0052), and Low-Dose Dexamethasone (LD-DEX) in Patients with Relapsed and Refractory Multiple Myeloma. Blood, 2015, 126, 4220-4220.	1.4	7
312	Human Monoclonal Antibody Targeting IL-17A (AIN457) Down-Regulates MM Cell-Growth and Survival and Inhibits Osteoclast Development In Vitro and In Vivo: A Potential Novel Therapeutic Application In Myeloma. Blood, 2010, 116, 456-456.	1.4	7
313	Dual BCL-2/BCL-XL Inhibitor Pelcitoclax (APG-1252) Overcomes Intrinsic and Acquired Resistance to Venetoclax in Multiple Myeloma Cells. Blood, 2021, 138, 2655-2655.	1.4	7
314	Lenalidomide Polarizes Th1-specific Anti-tumor Immune Response and Expands XBP1 Antigen-Specific Central Memory CD3+CD8+ T cells against Various Solid Tumors. Journal of Leukemia (Los Angeles,) Tj ETQq0 0	0 r gB IT /O	verlock 10 Tf :
315	lgH translocation with undefined partners is associated with superior outcome in multiple myeloma patients. European Journal of Haematology, 2020, 105, 326-334.	2.2	6
316	The safety of current and emerging therapies for multiple myeloma. Expert Opinion on Drug Safety, 2020, 19, 269-279.	2.4	6
317	The Role of Clonal Hematopoiesis of Indeterminate Potential (CHIP) in Multiple Myeloma: Immunomodulator Maintenance Post Autologous Stem Cell Transplant (ASCT) Predicts Better Outcome. Blood, 2018, 132, 749-749.	1.4	6
318	Expanded Meta-Analyses Confirms the Association between MRD and Long-Term Survival Outcomes in Multiple Myeloma (MM). Blood, 2019, 134, 4742-4742.	1.4	6
319	A Phase II Study of Elotuzumab in Combination with Pomalidomide, Bortezomib, and Dexamethasone in Relapsed and Refractory Multiple Myeloma. Blood, 2019, 134, 3169-3169.	1.4	6
320	IPI-504: A Novel hsp90 Inhibitor with In Vitro and In Vivo Anti-Tumor Activity Blood, 2004, 104, 2403-2403.	1.4	6
321	Phase I Study of BB-10901 (huN901-DM1) in Patients with Relapsed and Relapsed/Refractory CD56-Positive Multiple Myeloma Blood, 2006, 108, 3574-3574.	1.4	6
322	Final Results of a Phase II Trial with Plitidepsin (Aplidin) Alone and in Combination with Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Blood, 2008, 112, 3700-3700.	1.4	6
323	Combination therapy targeting Erk1/2 and CDK4/6i in relapsed refractory multiple myeloma. Leukemia, 2022, 36, 1088-1101.	7.2	6
324	Synopsis of a research roundtable presented on cell signaling in myeloma: regulation of growth and apoptosisopportunities for new drug discovery. Molecular Cancer Therapeutics, 2002, 1, 1361-5.	4.1	6

KENNETH C ANDERSON

#	Article	IF	CITATIONS
325	Phenotypic and functional characterization of normal and malignant terminal B (plasma) cells. European Journal of Haematology, 1989, 43, 19-26.	2.2	5
326	Autologous bone marrow transplantation therapy for multiple myeloma. European Journal of Haematology, 1989, 43, 157-163.	2.2	5
327	Precision medicine in multiple myeloma: are we there yet?. Expert Review of Precision Medicine and Drug Development, 2019, 4, 51-53.	0.7	5
328	Targeting Bcl-2 as Therapy for Multiple Myeloma Blood, 2005, 106, 109-109.	1.4	5
329	Dasatinib (BMS-354825): A Multi-Targeted Kinase Inhibitor with Activity Against Multiple Myeloma Blood, 2005, 106, 1571-1571.	1.4	5
330	Establishment of a Waldenstrom's Macroglobulinemia Cell Line (BCWM.1) with Productive In Vivo Engraftment in SCID-hu Mice Blood, 2005, 106, 979-979.	1.4	5
331	Anti-DKK1 mAb (BHQ880) as a Potential Therapeutic for Multiple Myeloma Blood, 2007, 110, 551-551.	1.4	5
332	BT062, An Antibody-Drug Conjugate Directed Against CD138, Shows Clinical Activity In a Phase I Study In Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2010, 116, 3060-3060.	1.4	5
333	Final Results of the Phase I/II Trial of Weekly Bortezomib In Combination with Temsirolimus (CCI-779) In Relapsed or Relapsed/Refractory Multiple Myeloma Specifically In Patients Refractory to Bortezomib. Blood, 2010, 116, 990-990.	1.4	5
334	Nifuroxazide Inhibits STAT3 Function and Shows Potent Anti-Tumor Activity Against Multiple Myeloma Blood, 2006, 108, 3450-3450.	1.4	5
335	High Resolution Genome-Wide Analyses Revealed That Bortezomib Selects a Prediagnosis Clone In Relapsed Patients with Multiple Myeloma. Blood, 2010, 116, 2960-2960.	1.4	5
336	Loss-of-Function of Gabarap Impairs Bortezomib-Induced Anti-Tumor Immunity in Multiple Myeloma: Clinical Application. Blood, 2019, 134, 134-134.	1.4	5
337	Gene Expression Profiling in Multiple Myeloma: Redefining the Paradigm of Risk-Adapted Treatment. Frontiers in Oncology, 2022, 12, 820768.	2.8	5
338	Survival Analysis from the CALGB Study of Lenalidomide Maintenance Therapy in Newly Diagnosed Multiple Myeloma Post-Autologous Stem Cell Transplantation Adjusted for Crossover (Alliance) Tj ETQq0 0 0 rg	BT / D verloo	ck 40 Tf 50 21
339	MEDI2228, a Novel Bcma Antibody-PBD Conjugate, Sensitizes Human Multiple Myeloma Cells to NK Cell-Mediated Cytotoxicity and Upregulates CD38 Expression in MM Cells. Blood, 2019, 134, 3096-3096.	1.4	4
340	Bortezomib Induces Anti-Multiple Myeloma Immune Response Mediated By Cgas/Sting Pathway Activation, Type I Interferon Secretion, and Immunogenic Cell Death: Clinical Application. Blood, 2020, 136, 7-8.	1.4	4
341	Comprehensive Genome-Wide Profile of Regional Gains and Losses in Multiple Myeloma Using Array-CGH: The 1q21 Amplification and Potential Role of the BCL-9 Gene in Multiple Myeloma Pathogenesis Blood, 2004, 104, 785-785.	1.4	4
342	Targeted Overexpression of the Transcription Factor XBP-1 in B Cells Promotes Plasma Cell and Lymphoplasmacytic Neoplasms in Transgenic Mice Blood, 2005, 106, 359-359.	1.4	4

KENNETH C ANDERSON

#	Article	IF	CITATIONS
343	Lenalidomide and Bortezomib Inhibit Osteoclast Differentiation and Activation in Multiple Myeloma: Clinical Implications Blood, 2006, 108, 3485-3485.	1.4	4
344	Erythropoiesis-Stimulating Agents Do Not Adversely Affect Long-Term Outcomes Nor Increase the Risk of Thromboembolic Events in Multiple Myeloma Patients Treated in the Phase III VISTA Trial Blood, 2008, 112, 1741-1741.	1.4	4
345	AT7519, a Novel Small Molecule Multi-Cyclin Dependent Kinase Inhibitor, Induces Apoptosis in Multiple Myeloma VIA GSK3β. Blood, 2008, 112, 251-251.	1.4	4
346	Updated Results of a Phase I Study of RAD001 In Combination with Lenalidomide In Patients with Relapsed or Refractory Multiple Myeloma with Pharmacodynamic and Pharmacokinetic Analysis. Blood, 2010, 116, 3051-3051.	1.4	4
347	Final Results of the Phase I/II Study of Chemosensitization Using the CXCR4 Inhibitor Plerixafor in Combination with Bortezomib in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2015, 126, 4256-4256.	1.4	4
348	Identification of a Novel Long Intergenic Noncoding RNA - Linc00936, with Significant Impact on Multiple Myeloma Cell Growth Via mTOR Pathway Inhibition. Blood, 2015, 126, 504-504.	1.4	4
349	Phase I Study of IMGN901 in Patients with Relapsed and Relapsed/Refractory CD56-Positive Multiple Myeloma. Blood, 2008, 112, 3689-3689.	1.4	4
350	Microenvironment Is a Key Determinant of Immune Checkpoint Inhibitor Response. Clinical Cancer Research, 2022, 28, 1479-1481.	7.0	4
351	To transplant or not to transplant?. Blood, 2005, 106, 3687-3688.	1.4	3
352	Targeting ubiquitin-specific protease-7 in plasmacytoid dendritic cells triggers anti-myeloma immunity. Leukemia, 2021, 35, 2435-2438.	7.2	3
353	Don't Compromise Myeloma Care Due to COVID-19 Pandemic!. Blood Cancer Discovery, 2020, 1, 218-220.	5.0	3
354	Anti-Tumor Activity of KOS-953, a Cremophor-Based Formulation of the hsp90 Inhibitor 17-AAG Blood, 2004, 104, 2404-2404.	1.4	3
355	A Novel Orally Available Proteasome Inhibitor NPI-0052 Induces Killing in Multiple Myeloma (MM) Cells Resistant to Conventional and Bortezomib Therapies Blood, 2004, 104, 2405-2405.	1.4	3
356	Anti-Tumor Activity of IPI-504, a Novel Hsp90 Inhibitor in Multiple Myeloma Blood, 2004, 104, 4922-4922.	1.4	3
357	The Role of B Cell-Activating Factor (BAFF) in the Biology of Multiple Myeloma (MM) Blood, 2005, 106, 3380-3380.	1.4	3
358	Bone Marrow Mast Cells Are Significantly Increased in Patients with Waldenstrom's Macroglobulinemia, and Their Number Following Therapeutic Intervention Is Dependent on Extent of Response Blood, 2005, 106, 980-980.	1.4	3
359	Novel Agent Perifosine Enhances Antitumor Activity of Bortezomib, Rituximab and Other Conventional Therapies in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2517-2517. 	1.4	3
360	Promoting Osteoblastogenesis Using a Novel Dkk-1 Neutralizing Antibody in the Treatment of Multiple Myeloma Related Bone Disease. Blood, 2008, 112, 2739-2739.	1.4	3

#	Article	IF	CITATIONS
361	Combination of a Novel Proteasome Inhibitor NPI-0052 and Lenalidomide Trigger in Vivo Synergistic Cytotoxicity in Multiple Myeloma. Blood, 2008, 112, 3662-3662.	1.4	3
362	Aberrant Non-Homologous End Joining in Multiple Myeloma: A Role in Genomic Instability and As Potential Prognostic Marker Blood, 2012, 120, 2932-2932.	1.4	3
363	Targeting 19S-Proteasome Deubiquitinase Rpn11/POH1/PSMD14 in Multiple Myeloma. Blood, 2015, 126, 1811-1811.	1.4	3
364	JNK Activation and Fas Up-Regulation Precede Proteasomal Degradation of Topoisomerase I in SN38-Mediated Cytotoxicity Against Multiple Myeloma Blood, 2004, 104, 3413-3413.	1.4	3
365	Pharmacodynamic and Efficacy Studies of a Novel Proteasome Inhibitor NPI-0052 in Human Plasmacytoma Xenograft Mouse Model. Blood, 2008, 112, 3665-3665.	1.4	3
366	The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Potent and Selective Cytotoxicity against CD138 Positive Multiple Myeloma Cells in Vitro and in Vivo Blood, 2008, 112, 1716-1716.	1.4	3
367	Whole Genome Paired End Sequencing Identifies Genomic Evolution in Myeloma Blood, 2009, 114, 2846-2846.	1.4	3
368	Proteasome Inhibitors Sensitize Myeloma Cells to T Cell-Mediated Killing. Blood, 2011, 118, 1838-1838.	1.4	3
369	Activation of the ERK Pathway Drives Acquired Resistance to Venetoclax in MM Cell Models. Blood, 2020, 136, 21-22.	1.4	3
370	Management Strategies for Relapsed Multiple Myeloma. American Journal of Cancer, 2006, 5, 393-409.	0.4	2
371	Emerging Therapies for Multiple Myeloma. American Journal of Cancer, 2006, 5, 141-153.	0.4	2
372	The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells in vitro and in vivo. Nature Precedings, 2008, , .	0.1	2
373	Multiple Myeloma: Advances Reported in 2013 Are Useful in the Clinic. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 808-811.	4.9	2
374	Lymphoplasmacytic Cells and Mast Cells Are Targets for Imatinib Mesylate (Gleevec, Glivec) in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 4929-4929.	1.4	2
375	The Selective Protein Kinase CB Inhibitor, Enzastaurin, Induces In Vitro and In Vivo Antitumor Activity in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2496-2496.	1.4	2
376	The MEK1/2 Inhibitor AZD6244 (ARRY-142886) Downregulates Constitutive and Adhesion-Induced c-MAF Oncogene Expression and Its Downstream Targets in Human Multiple Myeloma Blood, 2006, 108, 3463-3463.	1.4	2
377	Anti-Myeloma Activity of the Small-Molecule Aurora Kinase Inhibitor VE465 Blood, 2006, 108, 3468-3468.	1.4	2
378	Anti-Myeloma Activity of Selective PI-3K/PDK/mTOR Inhibitor BEZ235 Blood, 2007, 110, 1185-1185.	1.4	2

#	Article	IF	CITATIONS
379	Phase I Study of Vaccination with Dendritic Cell Myeloma Fusions Blood, 2007, 110, 284-284.	1.4	2
380	Phase II Trial of the Oral mTOR Inhibitor RAD001 (Everolimus) in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4496-4496.	1.4	2
381	A Novel Aurora-a Kinase Inhibitor MLN8237 Induces Cytotoxicity and Cell Cycle Arrest in Experimental Multiple Myeloma Models Blood, 2008, 112, 1719-1719.	1.4	2
382	Proteasome Stress Causes Apoptotic Sensitivity of Multiple Myeloma Cells to Proteasome Inhibition. Blood, 2008, 112, 247-247.	1.4	2
383	RAD001 Exerts Anti-Tumor Activity in Waldenstrom Macroglobulinemia Blood, 2009, 114, 3732-3732.	1.4	2
384	Phase I Trial of Plerixafor and Bortezomib as a Chemosensitization Strategy In Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2010, 116, 1943-1943.	1.4	2
385	Selective Inhibition of HDAC6 with a New Prototype Inhibitor (ACY-1215) Overcomes Bortezomib Resistance In Multiple Myeloma (MM). Blood, 2010, 116, 2997-2997.	1.4	2
386	Blockade of XBP1 Splicing by Inhibition of IRE1α Is a Promising Therapeutic Option in Multiple Myeloma. Blood, 2011, 118, 133-133.	1.4	2
387	Investigational Agent MLN9708 Target Tumor Suppressor MicroRNA-33b in Multiple Myeloma Cells. Blood, 2011, 118, 136-136.	1.4	2
388	Biomarker Correlation with Outcomes in Patients with Relapsed or Refractory Multiple Myeloma on a Phase I Study of Everolimus in Combination with Lenalidomide,. Blood, 2011, 118, 3966-3966.	1.4	2
389	Bone Turnover Biomarkers Are Useful In Monitoring Myeloma Bone Disease and As Early Predictor Biomarkers For Relapse Disease In Multiple Myeloma. Blood, 2013, 122, 1869-1869.	1.4	2
390	Enhanced Cytotoxicity of Monoclonal Antibody SGN-40 and Immunomodulatory Drug IMiD3 Against Human Multiple Myeloma Blood, 2004, 104, 1498-1498.	1.4	2
391	Distinct Dynamic Profiles for NPI-0052-And Bortezomib-Induced Apoptosis in Multiple Myeloma Blood, 2006, 108, 3396-3396.	1.4	2
392	The CXCR4/SDF-1 Axis Regulates Migration and Adhesion in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2418-2418.	1.4	2
393	Perifosine, an Oral Bioactive Novel Akt Inhibitor, Induces In Vitro and In Vivo Antitumor Activity in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2488-2488.	1.4	2
394	Resveratrol Exerts Antiproliferative Effect and Induces Apoptosis in Waldenstrom's Macroglobulinemia Blood, 2007, 110, 1383-1383.	1.4	2
395	MLN4924, a Novel Investigational NEDD8 Activating Enzyme Inhibitor, Exhibits Preclinical Activity In Multiple Myeloma and Waldenstrol`m's Macroglobulinemia through Mechanism Distinct From Existing Proteasome Inhibitors. Blood, 2010, 116, 2988-2988.	1.4	2
396	Targeting Immune Suppressive Microenvironment By Immune Checkpoint Blockade in Multiple Myeloma. Blood, 2014, 124, 27-27.	1.4	2

#	Article	IF	CITATIONS
397	The Multiple Myeloma Genome Project: Development of a Molecular Segmentation Strategy for the Clinical Classification of Multiple Myeloma. Blood, 2016, 128, 196-196.	1.4	2
398	Outcomes of Patients with Hematologic Malignancies and COVID-19 Infection: A Report from the ASH Research Collaborative Data Hub. Blood, 2020, 136, 7-8.	1.4	2
399	Enhancing the Immune Surveillance in Multiple Myeloma Via CDK4/6 Inhibition. Blood, 2020, 136, 33-34.	1.4	2
400	New drugs for multiple myeloma. Clinical Advances in Hematology and Oncology, 2006, 4, 592-4.	0.3	2
401	Insights into the management of older patients with multiple myeloma. Clinical Advances in Hematology and Oncology, 2019, 17, 390-392.	0.3	2
402	Preface. Hematology/Oncology Clinics of North America, 2007, 21, xiii-xiv.	2.2	1
403	Pomalidomide for the treatment of relapsed and refractory multiple myeloma. Expert Opinion on Orphan Drugs, 2014, 2, 1089-1108.	0.8	1
404	Vision Statement for Multiple Myeloma: Future Directions. Cancer Treatment and Research, 2016, 169, 15-22.	0.5	1
405	Bcma Heteroclitic Peptide Encapsulated Nanoparticle Enhances Antigen Stimulatory Capacity and Tumor-Specific CD8+ cytotoxic T Lymphocytes Against Multiple Myeloma. Blood, 2018, 132, 3195-3195.	1.4	1
406	A High Throughput Quantitative Seroproteomics Analysis of Multiple Myeloma Patients on Tagraxofusp Therapy Identifies Novel Cytokine-Assisted Mechanism of Action. Blood, 2020, 136, 34-34.	1.4	1
407	Mitochondria and Caspase-Independent Cell-Death Triggered by GCS-100, a Novel Carbohydrate-Based Therapeutic in Multiple Myeloma (MM) Cells Blood, 2004, 104, 2456-2456.	1.4	1
408	In Vitro and In Vivo Proteasome Activity Profiles of Bortezomib and a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3363-3363.	1.4	1
409	Requirement of Caspase-8 Versus Caspase-9 during Apoptosis in Multiple Myeloma Cells Induced by Bortezomib- or a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3378-3378.	1.4	1
410	CD27-Mediated Apoptosis Is Dependent on Siva-Induced Caspase Activation in Human Multiple Myeloma Blood, 2005, 106, 3398-3398.	1.4	1
411	Expression and Modulation of Carbohydrate-Binding Protein Galectin-3 in Multiple Myeloma Cells by Combined Treatment with GCS-100 and Dexamethasone Blood, 2005, 106, 4447-4447.	1.4	1
412	Inhibition of ERK1/2 Activity by the MEK1/2 Inhibitor AZD6244 (ARRY-142886) Induces Human Multiple Myeloma Cell Apoptosis in the Bone Marrow Microenvironment: A New Therapeutic Strategy for MM Blood, 2006, 108, 3460-3460.	1.4	1
413	Phase II Trial of Perifosine (KRX-0401) in Relapsed and/or Refractory Waldenstrol^m Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4493-4493.	1.4	1
414	Phase II Trial of the mTOR Inhibitor RAD001 in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: The Dana Farber Cancer Institute Experience Blood, 2008, 112, 1011-1011.	1.4	1

#	Article	IF	CITATIONS
415	MicroRNA Changes Occur in Multiple Myeloma Cells in the Context of Bone Marrow Milieu Blood, 2009, 114, 1785-1785.	1.4	1
416	A Combined Survival Model Integrating Gene Expression and Alternative Splicing Events Provides Higher Predicative Power for Risk Stratification. Blood, 2010, 116, 1929-1929.	1.4	1
417	Bone Marker Directed Dosing of Zoledronic Acid for the Prevention of Skeletal Complications In Patients with Multiple Myeloma: Interim Analysis Results of the Z-MARK Study. Blood, 2010, 116, 2971-2971.	1.4	1
418	CYC065, a Potent Derivative of Seliciclib Is Active In Multiple Myeloma In Preclinical Studies. Blood, 2010, 116, 2999-2999.	1.4	1
419	A Novel SIRT1 Activator SIRT1720 Triggers In Vitro and In Vivo Cytotoxicity In Multiple Myeloma Via ATM-Dependent Mechanism. Blood, 2010, 116, 3007-3007.	1.4	1
420	Selectin Inhibition Disrupts Multiple Myeloma Cells Interaction with the Bone Marrow Microenvironment and Sensitizes Them to Therapy. Blood, 2010, 116, 453-453.	1.4	1
421	Phase I Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 1874-1874.	1.4	1
422	Phase I Trial of Everolimus and Rituximab or Everolimus, Bortezomib and Rituximab in Relapsed or Relapsed/Refractory Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 2705-2705.	1.4	1
423	Final Results of the Phase II Trial of Single Agent Panobinostat (LBH589) in Relapsed or Relapsed/Refractory Waldenstrom Macroglobulinemia. Blood, 2011, 118, 2706-2706.	1.4	1
424	Deep Sequencing of Immunoglobulin Loci Reveals Evolution of IgH Clone in Multiple Myeloma Patients over the Course of Treatment. Blood, 2014, 124, 2005-2005.	1.4	1
425	Clonal-Heterogeneity and Propensity for Bone Metastasis in Multiple Myeloma. Blood, 2014, 124, 3370-3370.	1.4	1
426	Final Results of a Phase 1/2 Open-Label Study to Assess the Safety, Tolerability and Preliminary Efficacy of Evofosfamide, a Hypoxia-Activated Prodrug, and Dexamethasone with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Blood, 2016, 128, 2122-2122.	1.4	1
427	Combination of a Novel HDAC 6 Inhibitor ACY-241 with Anti-PD-L1 Antibody Enhances Anti-Tumor Immunity and Cytotoxicity in Multiple Myeloma. Blood, 2016, 128, 382-382.	1.4	1
428	ASH's Research Agenda Gets a Tune-Up. , 2017, 14, .		1
429	PRMT5 inhibitors on the (myeloma) road. Oncotarget, 2018, 9, 36646-36647.	1.8	1
430	New Insights into the Treatment of Multiple Myeloma with Histone Deacetylase Inhibitors. Current Pharmaceutical Design, 2012, 19, 734-744.	1.9	1
431	Molecular Mechanisms Underlying the Development of Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3409-3409.	1.4	1
432	TGF-β Receptor I Kinase Inhibitor Downregulates Cytokine Secretion and Multiple Myeloma Cell Growth in the Bone Marrow Microenvironment Blood, 2004, 104, 2355-2355.	1.4	1

#	Article	IF	CITATIONS
433	Increased TCF-4 Expression Correlates with Reduced Caspase-3 Induction and Confers Resistance to Bortezomib Blood, 2004, 104, 285-285.	1.4	1
434	Novel Hydroxamic Acid-Derived HDAC Inhibitor LBH589 Potently Activates Intrinsic and Extrinsic Apoptotic Pathways, and Induces Tubulin Hyperacetylation in Multiple Myeloma Blood, 2005, 106, 1578-1578.	1.4	1
435	Molecular Mechanisms Regulating Resistance to the Akt Inhibitor Perifosine in Waldenstrom's Macroglobulinemia, the Role of the ERK and PKC Pathways Blood, 2006, 108, 2416-2416.	1.4	1
436	The BAFF Inhibitor AMG523 Blocks Adhesion and Survival of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment: Clinical Implication Blood, 2006, 108, 3452-3452.	1.4	1
437	Combination of Proteasome Inhibitors Bortezomib and NPI-0052 Trigger In Vivo Synergistic Cytotoxicity in Multiple Myeloma Blood, 2007, 110, 2524-2524.	1.4	1
438	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4494-4494.	1.4	1
439	In Vitro and In Vivo Anti-Myeloma Activity of PRLX, an Orally-Bioavailable Agent Against Cells with Constitutive Activation of Ras or Its Downstream Pathway Blood, 2007, 110, 540-540.	1.4	1
440	Low Levels of Circulating CS1, a Newly Identified Multiple Myeloma (MM) Antigen for a Novel Humanized HuLuc63 Monoclonal Antibody, Is Detected in MM Patient Sera and Correlates with Active Disease Blood, 2007, 110, 1509-1509.	1.4	1
441	Biological and Therapeutic Potential of Mir-155, 585 and Let-7f in Myeloma in Vitro and In Vivo Blood, 2009, 114, 833-833.	1.4	1
442	AT9283, a Small Molecule Multi-Targeted Kinase Inhibitor Induces Antimyeloma Activity Via Potent Aurora Kinase and STAT3 Inhibition Blood, 2009, 114, 3833-3833.	1.4	1
443	Hematological Testing Is Not Required with Every Dose of Bortezomib In Patients with Adequate Blood Counts at the Start of Each Cycle. Blood, 2010, 116, 1963-1963.	1.4	1
444	MiR-29b Exerts Anti-Multiple Myeloma Activity by Targeting Key Oncogenic Pathways and Modulating DNA Methylation Profile Blood, 2012, 120, 2941-2941.	1.4	1
445	CRM1 Blockade by Novel Inhibitors of Nuclear Export (SINEs) Inhibits Multiple Myeloma Cell Growth, Osteoclastogenesis, and Myeloma-Induced Osteolysis. Blood, 2012, 120, 326-326.	1.4	1
446	CRM1 Inhibition Abrogates Osteoclast Formation and Bone Resorption Via Inhibition of RANKL-Induced NFκB While Sparing Osteoblastogenesis: Further Therapeutic Implication in Multiple Myeloma. Blood, 2012, 120, 1835-1835.	1.4	1
447	Identification of Significant Barriers to Accrual (BtA) to NCI Sponsored Multiple Myeloma – Clinical Trials (MM-CT): A Step towards Improving Accrual to Clinical Trials Blood, 2012, 120, 3165-3165.	1.4	1
448	MYD88 L265P Promotes Survival of Waldenstrom's Macroglobulinemia Cells by Activation of Bruton's Tyrosine Kinase. Blood, 2012, 120, 897-897.	1.4	1
449	Cytoskeleton Regulator PAK4 Plays a Role in Growth and Survival of Myeloma with a Potential Therapeutic Intervention Using PAK4 Allosteric Modulators (PAMs). Blood, 2014, 124, 3381-3381.	1.4	1
450	The Prognostic Impact of Dynamic Changes of Genetic Risk Stratification in Multiple Myeloma. Blood, 2020, 136, 1-3.	1.4	1

#	Article	IF	CITATIONS
451	Disruption of the m-SWI/SNF Complex Mediated By Recurrent Non-Coding Mutations in BCL7A Induces Tumor Cell Proliferation in Multiple Myeloma. Blood, 2020, 136, 40-40.	1.4	1
452	A new model of plasma cell proliferation. Blood, 2004, 103, 2438-2439.	1.4	0
453	Proteasome inhibition as an anticancer target. Nature Reviews Drug Discovery, 2005, 4, 698-698.	46.4	0
454	PDC-E2, a Common Auto Antigen in Primary Biliary Cirrhosis (PBC) Is Also a Target of an Antibody Response in Patients Who Achieve Complete Remission after Donor Lymphocyte Infusion Blood, 2004, 104, 2121-2121.	1.4	0
455	A Novel Murine Model for Human Waldenstrom's Macroglobulinemia Blood, 2004, 104, 3646-3646.	1.4	Ο
456	Atiprimod (N-N-diethl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) Inhibits Myeloma in Vivo Blood, 2004, 104, 2401-2401.	1.4	0
457	SDX-101 Is Cytotoxic and Overcomes Drug Resistance in Multiple Myeloma Blood, 2004, 104, 3466-3466.	1.4	0
458	Induction of Multiple Myeloma-Specific Cytotoxic T Lymphocytes Using HLA-A2.1-Specific CD19 and CD20 Peptides Blood, 2004, 104, 2477-2477.	1.4	0
459	Evaluation of the Ras/B-Raf/SHP-2 Axis in B Cell Malignancies Blood, 2004, 104, 4344-4344.	1.4	0
460	Bortezomib Targets Multiple Myeloma Endothelial Cells Blood, 2004, 104, 4903-4903.	1.4	0
461	Inhibition of Human Plasmacytoma Cell Growth by a Novel JAK Kinase Inhibitor Blood, 2004, 104, 644-644.	1.4	0
462	Targeting Mitochondrial Factor Smac/DIABLO as Therapy for Multiple Myeloma (MM) Blood, 2004, 104, 764-764.	1.4	0
463	Hepatitis C Viral Infection Is Not Associated with Waldenstrom's Macroglobulinemia Blood, 2005, 106, 4693-4693.	1.4	Ο
464	Alkylphosphocholine Perifosine Inhibits Myeloma Cell Growth While Inducing Myeloid Hyperplasia in a Murine Myeloma Model Blood, 2005, 106, 1579-1579.	1.4	0
465	Chromosomal Deletions and Amplifications in Multiple Myeloma Detected by 500K Single Nucleotide Polymorphism Array Analysis Blood, 2005, 106, 1551-1551.	1.4	0
466	Immunomodulatory Drug Lenalidomide (CC-5013, IMiD3) Augments Anti-CD40 SGN-40-Induced Cytotoxicity in Human Multiple Myeloma: Clinical Implications Blood, 2005, 106, 5150-5150.	1.4	0
467	Role of BAFF in Adhesion and Growth of Human Multiple Myeloma Cells in the Bone Marrow Microenvironment Blood, 2005, 106, 627-627.	1.4	0
468	In Vitro Generation of Highly-Purified Functional Invariant NKT Cells: A Strategy for Immunotherapy in Multiple Myeloma Blood, 2005, 106, 5183-5183.	1.4	0

#	Article	IF	CITATIONS
469	Up-Regulation of c-Jun contributes to the Induction of Apoptosis by Adaphostin in Human Multiple Myeloma Cells Blood, 2005, 106, 1585-1585.	1.4	0
470	Targeting Therapy for Resistant Multiple Myeloma with a Novel Inhibitor of NF-KB, NPI-1387 Blood, 2005, 106, 640-640.	1.4	0
471	Didox Induced Apoptosis Occurs by Inhibiting DNA Synthesis and Repair Via Down-Regulation of Ribonucleotide Reductase M1 in Multiple Myeloma (MM) Blood, 2005, 106, 5153-5153.	1.4	0
472	Clonotypic Bone Marrow-Derived Endothelial Progenitor Cells in Multiple Myeloma Blood, 2006, 108, 3497-3497.	1.4	0
473	Biological Pathways and In Vivo Anti-Tumor Activity Induced by Atiprimod in Multiple Myeloma (MM) Blood, 2006, 108, 3455-3455.	1.4	0
474	Novel Murine Model To Study Modulation of Genes and Molecular Pathways Induced Following In Vivo Interaction between Multiple Myeloma Cells and Human BM Milieu Blood, 2006, 108, 3409-3409.	1.4	0
475	Direct Assessment of Proteasomal Degradation as a Potential Predictor of Responsiveness to Bortezomib in Multiple Myeloma Blood, 2006, 108, 3525-3525.	1.4	Ο
476	Defining a Murine Model To Study Bone Disease in Multiple Myeloma (MM) Blood, 2006, 108, 3518-3518.	1.4	0
477	A Novel Real-Time In Vivo Homing Model of Multiple Myeloma Blood, 2006, 108, 242-242.	1.4	Ο
478	The Small-Molecule VEGF-Receptor Inhibitor Pazopanib (GW786034B) Targets Both Tumor and Endothelial Cells in Multiple Myeloma Blood, 2006, 108, 5003-5003.	1.4	0
479	Physical and Functional Association of the MRN Complex with Human Telomerase in Multiple Myeloma Blood, 2006, 108, 5076-5076.	1.4	0
480	Clinical, Radiographic, and Biomarker Characterization of Multiple Myeloma Patients with Bisphosphonate Associated Osteonecrosis of the Jaw Blood, 2006, 108, 3591-3591.	1.4	0
481	In Vitro Generation of Highly Purified Functional Invariant NKT Cells in Multiple Myeloma: A Strategy for Immunotherapy Blood, 2006, 108, 5104-5104.	1.4	Ο
482	Upregulation of c-Jun Induces Cell Death Via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma Blood, 2006, 108, 3415-3415.	1.4	0
483	Bcl-2, Mcl-1 and p53 Expression Confer Sensitivity to Bcl-2 Inhibitor ABT-737 in Multiple Myeloma Blood, 2006, 108, 3474-3474.	1.4	0
484	Novel Mouse Models of Human Myeloma. , 2007, 4, .		0
485	Novel Proteasome Inhibitor Therapy. , 2007, 4, .		0
486	Targeting Protein Homeostasis in Novel Therapeutics. , 2007, 4, .		0

#	Article	IF	CITATIONS
487	Promise and Obstacles to Gene Expression Profiling in Multicenter Trials. , 2007, 4, .		Ο
488	What is High-Risk Myeloma?. , 2007, 4, .		0
489	Phenotypic and Functional Effects of Perifosine on Dendritic Cells Blood, 2007, 110, 4803-4803.	1.4	Ο
490	Biologic Sequelae of CDC2 Inhibition in MM Blood, 2007, 110, 4797-4797.	1.4	0
491	Targeting NF-kB by Perifosine, Bortezomib and Rituximab in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 2512-2512.	1.4	Ο
492	Genome-Wide Profiling of Endothelial Progenitor Cells in Multiple Myeloma: Overlaps with Myeloma Tumor Cells and Common Cancer Gene-Pathways Blood, 2007, 110, 394-394.	1.4	0
493	Modulation of Gene Expression Profile and In Vivo Anti-Myeloma Activity Induced by Valproic Acid, a Histone Deacytylase Inhibitor Blood, 2007, 110, 4790-4790.	1.4	0
494	Multiple Myeloma Cell-Osteoblast Interaction Results in Impaired Bone Formation Blood, 2007, 110, 4764-4764.	1.4	0
495	Targeting Proteinkinase C Alters ER-Stress and b-Catenin Signaling in Multiple Myeloma: Therapeutic Implications Blood, 2007, 110, 258-258.	1.4	0
496	Rational for a Combination of Bortezomib and Doxorubicin in the Treatment of Multiple Myeloma: A Pivotal Role for Mcl-1 Blood, 2007, 110, 1501-1501.	1.4	0
497	High-Resolution Genomic Profiles Identify Novel Genes and/or Chromosomal Regions with Prognostic and Oncogenic Significance in Myeloma Patients Blood, 2007, 110, 657-657.	1.4	0
498	Targeting Multiple RTKs in Cancer. , 2008, 5, .		0
499	Combination Proteasome Inhibitor Therapy. , 2008, 5, .		Ο
500	Novel Therapy for Relapsed Myeloma. , 2008, 5, .		0
501	Gene Addiction in Myeloma. , 2008, 5, .		Ο
502	Incorporating Novel Agents into Upfront Myeloma Therapy. , 2008, 5, .		0
503	Selecting Patients Most Likely to Respond to Therapy. , 2008, 5, .		0
504	Phenotypic and Functional Effects of Novel Akt Inhibitor Perifosine on Immune System Blood, 2008, 112, 1555-1555.	1.4	0

KENNETH C ANDERSON

#	Article	IF	CITATIONS
505	Sp1 Transcription Factor as a Novel Therapeutic Target in Multiple Myeloma (MM). Blood, 2008, 112, 3664-3664.	1.4	0
506	Immunomodulatory Effects of Lenalidomide and Bortezomib on Bone Marrow Stroma Cell and CD4 T Cell Interaction in Multiple Myeloma Blood, 2008, 112, 1690-1690.	1.4	0
507	Dietary Supplement Vitamin C Significantly Abrogates Bortezomib-Induced Multiple Myeloma (MM) Cell Growth Inhibition. Blood, 2008, 112, 3687-3687.	1.4	Ο
508	TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application. Blood, 2008, 112, 2737-2737.	1.4	0
509	Predicting Response to Proteasome Inhibitor Therapy. , 2009, 6, .		Ο
510	Therapeutic Potential of Targeting the Immunoproteasome. , 2009, 6, .		0
511	Familial Monoclonal Gammopathy of Undetermined Significance, Multiple Myeloma, and Other Cancers. , 2009, 6, .		0
512	F18-Fluorodeoxyglucose PET Scanning in Multiple Myeloma. , 2009, 6, .		0
513	Moving Toward Personalized Therapies in Myeloma. , 2009, 6, .		0
514	Developing Faithful Models to Evaluate Novel Therapeutics. , 2009, 6, .		0
515	Phenotypic and Functional Effects of Novel HDAC Inhibitor LBH589 On Human Lymphocyte Populations Blood, 2009, 114, 3681-3681.	1.4	0
516	Primary Waldesntrom Macroglobulinemia Cells Harbor Constitutive Activation of Akt, mTOR, Rictor and Raptor: Rational for Testing a Dual Inhibitor of the PI3K/Akt and mTOR Pathways in This Disease Blood, 2009, 114, 3843-3843.	1.4	0
517	Perturbation of Genomic Instability by Wortmannin in Myeloma Blood, 2009, 114, 1105-1105.	1.4	0
518	Microenvironment-Dependent Synthetic Lethality: Implications for Tumor Pathophysiology and Anti-Cancer Drug Discovery Blood, 2009, 114, 1722-1722.	1.4	0
519	Molecular Sequaele of Activin A-Dependent Osteoblast Inhibition in Myeloma Blood, 2009, 114, 1789-1789.	1.4	0
520	Immunomodulatory EFFECTS of Lenalidomide and Pomalidomide ON INTERACTION of TUMOR and BONE MARROW Accessory CELLS IN MULTIPLE MYELOMA Blood, 2009, 114, 950-950.	1.4	0
521	Evolution of Genomic Changes and Their Significance in Myeloma Blood, 2009, 114, 605-605.	1.4	0
522	Proteomics as a Functional Tool in Evaluating Bortezomib Treatment and Drug Resistance Mechanism Blood, 2009, 114, 1805-1805.	1.4	0

#	Article	IF	CITATIONS
523	A NOVEL Aurora A Kinase INHIBITOR MLN8237 Induces Cytotoxicity and CELL Cycle Arrest IN MULTIPLE MYELOMA Blood, 2009, 114, 3830-3830.	1.4	0
524	HDAC Inhibition by LBH589 Affects Phenotype and Function of Human Dendritic Cells Blood, 2009, 114, 1646-1646.	1.4	0
525	Panobinostat Inhibits JAK2/STAT3 Pathway in Multiple Myeloma Blood, 2009, 114, 2849-2849.	1.4	Ο
526	Plasmacytoid Dendritic Cells in Myeloma. , 2010, 7, .		0
527	Role of Allotransplantation in Myeloma. , 2010, 7, .		Ο
528	The Evolving Role of Autologous Stem Cell Transplantation in the Treatment of Multiple Myeloma. , 2010, 7, .		0
529	A Step Toward Safer Immunomodulatory Drugs. , 2010, 7, .		Ο
530	Dynamic Regulation of the Level of Hypoxia In the Bone Marrow Regulates Cell Dissemination In Multiple Myeloma. Blood, 2010, 116, 4035-4035.	1.4	0
531	Gene Expression Profile Alone Is Inadequate In Predicting Complete Responses In Multiple Myeloma. Blood, 2010, 116, 306-306.	1.4	0
532	SCID-Synth-Hu: a Novel Multiple Myeloma Model for In Vivo Expansion of Primary Cells. Blood, 2010, 116, 452-452.	1.4	0
533	An Investigational Novel Orally Bioavailable Proteasome Inhibitor MLN9708/MLN2238 Triggers Cytotoxicity In Multiple Myeloma Cells Via p21- and Caspase-8-Dependent Signaling Pathway. Blood, 2010, 116, 2992-2992.	1.4	Ο
534	Anti-Myeloma Activity of Enzymatically Activated Melphalan Prodrug J1. Blood, 2010, 116, 1838-1838.	1.4	0
535	An Integrative Analysis of Network Motifs and Gene Expression Data to Discover Experimentally Testable Transcription Factor-miRNA-Gene Regulatory Loops In Multiple Myeloma. Blood, 2010, 116, 1926-1926.	1.4	0
536	Bone Marrow Niche Down-Regulates Mir-30 In Multiple Myeloma Cells to Promote Cancer Progression and Cancer Initiation by Targeting BCL9/Wnt Pathway Blood, 2010, 116, 1569-1569.	1.4	0
537	Proteomic Studies Identify Citron Rho Interacting Kinase (CRIK), a Novel Protein That Regulates Proliferation and Survival In Multiple Myeloma Cells. Blood, 2010, 116, 2958-2958.	1.4	Ο
538	Compartment-Specific Bioluminescence Imaging Platform for the Open-Ended Identification of Novel Immunomodulatory Agents and High-Throughput Evaluation of Anti-Tumor Immune Function. Blood, 2010, 116, 451-451.	1.4	0
539	Biology and Therapeutic Targeting of Sp1 Transactivation In Myeloma. Blood, 2010, 116, 134-134.	1.4	0
540	Targeting Sp1 Transactivation In Waldenstrom's Macroglobulinemia: a Novel Therapeutic Option. Blood, 2010, 116, 120-120.	1.4	0

#	Article	IF	CITATIONS
541	Lenalidomide Enhances Multiple Myeloma Cytotoxicity Induced by a Novel Fc Domain-Engineered Anti-HM1.24 Monoclonal Antibody with Augmented NK Cell Degranulation. Blood, 2010, 116, 4064-4064.	1.4	Ο
542	Synergistic Enhancement of Conventional Anti-MM Drugs Efficacy with Plant Isothiocyanates: Therapeutic Implications. Blood, 2010, 116, 5016-5016.	1.4	0
543	Molecular Profiling of Extramedullary and Medullary Plasmacytomas Compared to Multiple Myeloma. Blood, 2010, 116, 4042-4042.	1.4	Ο
544	Genomic Analysis of Endothelial Progenitor Cells In Multiple Myeloma Reveals Aberrant Gene Pathways Common to Tumor Cells. Blood, 2010, 116, 3016-3016.	1.4	0
545	Tolerance and Response to Initial Systemic Therapy In Older Patients with Multiple Myeloma (MM): Observations From 276 Unselected Recent Cases In the Practices of US-Based Medical Oncologists (MOs). Blood, 2010, 116, 1516-1516.	1.4	0
546	Clinical Anti-Myeloma Activity of Aminobisphosphonates. , 2011, 8, .		0
547	Induction Combination Novel Agent Therapies in Myeloma. , 2011, 8, .		Ο
548	Sequencing the Myeloma Genome. , 2011, 8, .		0
549	Can We Treat Myeloma at Early Stages?. , 2011, 8, .		Ο
550	How is Bortezomib Best Used in Myeloma?. , 2011, 8, .		0
551	Multiple Myeloma: To T or Not to T, What Will the Answer Be?. , 2011, 8, .		0
552	Inhibition of c-Myc Expression and Function in Hematologic Malignancies. Blood, 2011, 118, 1409-1409.	1.4	0
553	MiR-34a Replacement As a Novel Therapeutic Approach for Multiple Myeloma: Preclinical In Vitro and In Vivo Evidence. Blood, 2011, 118, 2910-2910.	1.4	Ο
554	Perifosine Plus Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma Patients Previously Treated with Bortezomib: Final Results of a Phase I/II Trial. Blood, 2011, 118, 815-815.	1.4	0
555	Bone Marker Directed Dosing of Zoledronic Acid for the Prevention of Skeletal Complications in Patients with Multiple Myeloma: Primary Analysis Results of the Z-MARK Study. Blood, 2011, 118, 5122-5122.	1.4	Ο
556	RVD Induction Followed by Consolidation with ASCT in Patients with Newly Diagnosed Multiple Myeloma,. Blood, 2011, 118, 4134-4134.	1.4	0
557	Mutational Analysis of Tumor Samples From Patients with Relapsed or Refractory Multiple Myeloma (MM) Highlights the Prevalence of RAS/RAF Pathway Activation and Demonstrates Previously Unreported Mutations in Known Cancer Genes. Blood, 2011, 118, 1377-1377.	1.4	0
558	A Novel Acanthoic Acid Analog NPI-1342 Blocks ll̂ºB Kinase-α and Trigger In Vitro and In Vivo cytotoxicity in Multiple Myeloma Cells. Blood, 2011, 118, 1841-1841.	1.4	0

#	Article	IF	CITATIONS
559	Oral Proteasome Inhibitors in Multiple Myeloma. , 2012, 9, .		Ο
560	The Added Value of 18-F FDG PET/CT in Defining Prognosis and Response in Myeloma. , 2012, 9, .		0
561	Combined Histone Deacetylase and Proteasome Inhibitor Therapy in Myeloma. , 2012, 9, .		Ο
562	Delineating Molecular Mechanisms of Proteasome and Histone Deacetylase Inhibitor-Induced Myeloma Cytotoxicity. , 2012, 9, .		0
563	Microenvironment-Induced Genomic Instability in Multiple Myeloma. , 2012, 9, .		Ο
564	Lenalidomide Maintenance Therapy in Multiple Myeloma. , 2012, 9, .		0
565	Targeting Mcl-1 for Multiple Myeloma (MM) Therapy: Drug-Induced Generation of Mcl-1 Fragment Mcl-1128–350 Triggers MM Cell Death Via c- Jun Upregulation. Blood, 2012, 120, 3959-3959.	1.4	0
566	Myeloid Derived Suppressor Cells (MDSCs) Regulate Tumor Growth, Immune Response and Regulatory T Cell (Treg) Development in the Multiple Myeloma Bone Marrow Microenvironment. Blood, 2012, 120, 565-565.	1.4	0
567	Integrating Gene and Mir Expression Profiles and Regulatory Network Structures to Define Aberrent Feed Forward Loops with Functional and Clinical Implications in Myeloma Blood, 2012, 120, 2386-2386.	1.4	Ο
568	Formation of the Functional Niche in Vitro by Mimicking the Pathophysiological Features of the Bone Marrow Microenvironment in Multiple Myeloma. Blood, 2012, 120, 1812-1812.	1.4	0
569	Cells of the Osteoblast Lineage Confer Myeloma Cell Resistance to Established and Investigational Therapeutic Agents. Blood, 2012, 120, 3995-3995.	1.4	Ο
570	Constitutive B-Cell Maturation Antigen (BCMA) Activation In Human Multiple Myeloma Cells Promotes Myeloma Cell Growth and Survival In The Bone Marrow Microenvironment Via Upregulated MCL-1 and NFκB Signaling. Blood, 2013, 122, 681-681.	1.4	0
571	Identification Of Novel Alternative Splice Variants Of Sirtuins In Multiple Myeloma: Therapeutic Implications. Blood, 2013, 122, 3121-3121.	1.4	0
572	The Oncogene MYC Triggers Replicative Stress and DNA Damage In Multiple Myeloma. Blood, 2013, 122, 3114-3114.	1.4	0
573	Antitumor Activities Of An Oral Selective HSP90α/β Inhibitor, TAS-116, In Combination With Bortezomib In Multiple Myeloma. Blood, 2013, 122, 4429-4429.	1.4	0
574	Suppression Of Uninvolved Immunoglobulin Has Significant Clinical Implication Including Predicting Relapse In Multiple Myeloma. Blood, 2013, 122, 3151-3151.	1.4	0
575	Time to Development of Treatment-Emergent Extramedullary and Osseous Plasmacytomas in the Era of Novel Agents: An Analysis of Upfront Regimens in Newly Diagnosed MM Incorporating Lenalidomide and Bortezomib. Blood, 2014, 124, 3468-3468.	1.4	0
576	Nucleotide Excision Repair (NER) Is Frequently Impaired and Affects Outcome in Multiple Myeloma (MM). Blood, 2014, 124, 2055-2055.	1.4	0

#	Article	IF	CITATIONS
577	Synthetic Lethal Approaches to Exploit Replicative Stress in Aggressive Myeloma. Blood, 2014, 124, 173-173.	1.4	0
578	Bone Marrow Microenvironment Regulates Alternative Splicing Events in Myeloma Cells through Downregulation of RNA Binding Protein Fox2. Blood, 2014, 124, 4714-4714.	1.4	0
579	Clinical Impact of an Internet-Based Tool to Provide Expert Guidance for Multiple Myeloma (MM) from 2012 to 2014. Blood, 2014, 124, 1298-1298.	1.4	0
580	IL-17A-Mediated Notch Signaling in Multiple Myeloma. Blood, 2014, 124, 3434-3434.	1.4	0
581	Mimicking Myeloma Niche Ex Vivo. Blood, 2014, 124, 2076-2076.	1.4	0
582	Evaluation of Immune Profile in Patients with Multiple Myeloma Using Cytof Technology. Blood, 2014, 124, 3404-3404.	1.4	0
583	Prognostic Value of Circulating Exosomal microRNAs in 112 Patients with Multiple Myeloma. Blood, 2014, 124, 2056-2056.	1.4	0
584	Incidence and Clinical Features of Extramedullary Multiple Myeloma in Patients Who Underwent Stem Cell Transplantation. Blood, 2014, 124, 5746-5746.	1.4	0
585	Long Intergenic Non-Coding RNAs (lincRNA) Impacts Biology and Clinical Outcome in Multiple Myeloma. Blood, 2014, 124, 642-642.	1.4	0
586	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	1.4	0
587	Inter and Intra-Clonal Heterogeneity in Multiple Myeloma and Waldenstrom Macroglobulinemia. Blood, 2014, 124, 2070-2070.	1.4	0
588	BH3 Profiling Identifies Bcl-2 Dependency in Multiple Myeloma and Predicts Sensitivity to BH3 Mimetics. Blood, 2014, 124, 417-417.	1.4	0
589	Apurinic/Apyrimidinic Endonuclease 1 Induced Genomic Instability Causes T-Cell Acute Lymphoblastic Leukemia in Zebrafish. Blood, 2015, 126, 1431-1431.	1.4	0
590	Activation of Lysosomal Function and Reactive Oxygen Species Play Crucial Roles in SAR650984-Induced Direct Killing of Human Multiple Myeloma Cells with Mutated p53, Which Is Further Augmented By Pomalidomide. Blood, 2015, 126, 4253-4253.	1.4	0
591	The KDM3A-KLF2-IRF4 Axis Maintains Myeloma Cell Survival. Blood, 2015, 126, 3633-3633.	1.4	0
592	Low-Risk Multiple Myeloma By SKY92+ISS Validated in the Multiple Myeloma Genomics Initiative Study. Blood, 2015, 126, 5322-5322.	1.4	0
593	The Biologic Relevance of PIM Kinases in the Context of Multiple Myeloma and Their Potential As Therapeutic Targets in Combination Drug Therapy. Blood, 2015, 126, 2992-2992.	1.4	0
594	Dysregulated Nucleotide Excision Repair (NER) Is a New Target in Multiple Myeloma. Blood, 2015, 126, 4187-4187.	1.4	0

#	Article	IF	CITATIONS
595	Targeting Replicative Stress to Treat Hematological Disorders. Blood, 2015, 126, 2419-2419.	1.4	Ο
596	The Complex Landscape of Rearrangements in Smoldering and Symptomatic Multiple Myeloma Revealed By Whole-Genome Sequencing. Blood, 2016, 128, 236-236.	1.4	0
597	Deubiquitylating Enzyme USP1 As Therapeutic Target in Multiple Myeloma. Blood, 2016, 128, 3290-3290.	1.4	0
598	Germinal Center-Derived Lymphomas and Plasmacytomas in Mice with Targeted Deletion of MiR-15a/16-1 in Activated B Cells. Blood, 2016, 128, 743-743.	1.4	0
599	ldentification and Validation of HLA-A24 XBP1us, XBP1sp, CD138, and CS1 Peptides to Generate Antigens Specific-Cytotoxic T Lymphocytes: Preclinical Basis for Vaccine Therapy in HLA-A24 Patients with Multiple Myeloma and Other Cancers. Blood, 2016, 128, 5689-5689.	1.4	0
600	Anti-Tumor Activities of XBP1 Antigen-Specific Cytotoxic T Lymphocytes Are Enhanced By HDAC6 Inhibitor ACY241. Blood, 2016, 128, 2143-2143.	1.4	0
601	Motivation for Education. , 2017, 14, .		Ο
602	Beyond Business As Usual. , 2017, 14, .		0
603	Way to Make a Statement: Government Policy and ASH. , 2017, 14, .		0
604	Staying Vigilant on Health Care Reform. , 2017, 14, .		0
605	Standing Up for Patients. , 2017, 14, .		0
606	Blockade of Ubiquitin Receptor PSMD4/Rpn10 Triggers Cytotoxicity and Overcomes Bortezomib-Resistance in Multiple Myeloma. Blood, 2018, 132, 3211-3211.	1.4	0
607	Cell Type-Specific Deregulation of Polypyrimidine Tract- Binding Proteins (PTBPs) Drive Aberrant Splicing in Multiple Myeloma (MM) and Acute Myeloid Leukemia (AML). Blood, 2018, 132, 3895-3895.	1.4	Ο
608	Functional Role of Linc-RNAs in Multiple Myeloma: Linc-MIR17HG Affects Fatty Acid Biosynthesis Via transcriptional Regulation of ACC1 with Potential Therapeutic Implications. Blood, 2018, 132, 1925-1925.	1.4	0
609	Blockade of Ubiquitin Receptor Rpn13 in Plasmacytoid Dendritic Cells Enhances Anti-Myeloma Immunity. Blood, 2019, 134, 3098-3098.	1.4	Ο
610	Altered Expression of Epigenetic Modifiers Identifies Novel Biomarkers and Therapeutic Targets in AL Amyloidosis. Blood, 2021, 138, 4719-4719.	1.4	0
611	Transcriptional Deregulation Mediated By ID2-TCF3 Axis Supports MM Cell Growth and Proliferation in the Context of the Bone Marrow Milieu. Blood, 2021, 138, 2686-2686.	1.4	0
612	Aberrant CDK7 Activity Drives the Cell Cycle and Transcriptional Dysregulation to Support Multiple Myeloma Growth: An Attractive Molecular Vulnerability. Blood, 2021, 138, 2687-2687.	1.4	0

#	Article	IF	CITATIONS
613	Characteristics of a Comprehensive, Continuously Updated Longitudinal Database for Multiple Myeloma. Blood, 2021, 138, 4969-4969.	1.4	0
614	Pre-Clinical Validation of a Novel Erk1/2 and CDK4/6 Inhibitor Combination in Multiple Myeloma (MM). Blood, 2020, 136, 22-23.	1.4	0
615	RNA Regulator of Lipogenesis (RROL) Is a Novel Lncrna Mediating Protein-Protein Interaction at Gene Regulatory Loci Driving Lipogenic Programs in Multiple Myeloma. Blood, 2020, 136, 20-21.	1.4	0
616	Analysis of Sars-Cov-2-Associated Proteins Identify Tank-Binding Kinase-1 As an Immunotherapeutic Target in Multiple Myeloma. Blood, 2020, 136, 29-30.	1.4	0
617	A Novel CD138-Targeting Monoclonal Antibody Induces Potent Myeloma Killing and Further Synergizes with IMiDs or Bortezomib in in Vitro and In Vivo Preclinical Models of Human Multiple Myeloma. Blood, 2020, 136, 30-31.	1.4	0
618	TRAF2 Mediates Sensitivity to Immunomodulatory Drugs in the Bone Marrow Microenvironment. Blood, 2020, 136, 31-31.	1.4	0
619	Variation in the Treatment of Multiple Myeloma in the Real World. Blood, 2020, 136, 43-44.	1.4	0
620	A Phase I/II Study of Twice Weekly Ixazomib Plus Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma: Results from Phase I Dose Escalation Cohorts. Blood, 2020, 136, 1-2.	1.4	0
621	Blockade of Deubiquitylating Enzyme USP7 in Plasmacytoid Dendritic Cells Stimulates Anti-Myeloma Immunity. Blood, 2020, 136, 43-43.	1.4	0
622	Genomic and Transcriptomic Characterization of IgM Multiple Myeloma Identifies a Pre-Germinal Center Plasma Cell Disorder with Immature B-Cell Transcription-Factor Signature. Blood, 2020, 136, 7-8.	1.4	0
623	Targeting MM at the Nexus between Cell Cycle and Transcriptional Regulation Via CDK7 Inhibition. Blood, 2020, 136, 1-2.	1.4	0
624	Proteomic Characterization of Ubiquitin Receptor ADRM1/Rpn13. Blood, 2020, 136, 39-39.	1.4	0