
Riccardo Amorati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5467177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules, 2022, 12, 90.	1.8	14
2	Synergic Antioxidant Effects of the Essential Oil Component γ-Terpinene on High-Temperature Oil Oxidation. ACS Food Science & Technology, 2022, 2, 180-186.	1.3	13
3	The Underrecognized Role of the Hydroperoxyl (HOO•) Radical in Chain Propagation of Lipids and its Implication in Antioxidant Activity. , 2022, , 115-132.		1
4	Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants, 2022, 11, 1163.	2.2	3
5	Synergic antioxidant activity of γ-terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chemistry, 2021, 345, 128468.	4.2	45
6	SET and HAT/PCET acidâ€mediated oxidation processes in helical shaped fused bisâ€phenothiazines. ChemPhysChem, 2021, 22, 1446-1454.	1.0	5
7	Hydrogen Atom Transfer from HOO . to ortho â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie, 2021, 133, 15348-15352.	1.6	5
8	Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Interfaces, 2021, 13, 31996-32004.	4.0	11
9	Hydrogen Atom Transfer from HOO [.] to <i>ortho</i> â€Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie - International Edition, 2021, 60, 15220-15224.	7.2	57
10	Absolute Antioxidant Activity of Five Phenol-Rich Essential Oils. Molecules, 2021, 26, 5237.	1.7	11
11	Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH•. A Review. Antioxidants, 2021, 10, 1551.	2.2	30
12	Expanding the spectrum of polydopamine antioxidant activity by nitroxide conjugation. Journal of Materials Chemistry B, 2021, 9, 9980-9988.	2.9	13
13	Nanosponges for the protection and release of the natural phenolic antioxidants quercetin, curcumin and phenethyl caffeate. Materials Advances, 2020, 1, 2501-2508.	2.6	11
14	Antioxidant effect of cardanol in mixed nanoformulations with pluronic. Journal of Molecular Liquids, 2020, 316, 113822.	2.3	6
15	Proton-Sensitive Free-Radical Dimer Evolution Is a Critical Control Point for the Synthesis of Δ ^{2,2[′]} >Bibenzothiazines. Journal of Organic Chemistry, 2020, 85, 11440-11448.	1.7	5
16	Effect of Antioxidants on High-Temperature Stability of Renewable Bio-Oils Revealed by an Innovative Method for the Determination of Kinetic Parameters of Oxidative Reactions. Antioxidants, 2020, 9, 399.	2.2	15
17	From simple phenols to potent chain-breaking antioxidants by transposition of benzo[1,4]oxathiines to benzo[b]thiophenes. Arkivoc, 2020, 2019, 65-85.	0.3	4
18	Cardanol-like co-surfactants solubilized in pegylated micelles keep their antioxidant activity and preserve polyethylene glycol chains from oxidation. Journal of Molecular Liquids, 2019, 293, 111465.	2.3	7

RICCARDO AMORATI

#	Article	IF	CITATIONS
19	1-Methyl-1,4-cyclohexadiene as a Traceless Reducing Agent for the Synthesis of Catechols and Hydroquinones. Journal of Organic Chemistry, 2019, 84, 13655-13664.	1.7	17
20	Calibration of Squalene, <i>p</i> -Cymene, and Sunflower Oil as Standard Oxidizable Substrates for Quantitative Antioxidant Testing. Journal of Agricultural and Food Chemistry, 2019, 67, 6902-6910.	2.4	15
21	Ditocopheryl Sulfides and Disulfides: Synthesis and Antioxidant Profile. Chemistry - A European Journal, 2019, 25, 9108-9116.	1.7	9
22	The role of sulfur and heavier chalcogens in the chemistry of antioxidants. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 638-642.	0.8	5
23	Magnetic nanoantioxidants with improved radical-trapping stoichiometry as stabilizers for inhibition of peroxide formation in ethereal solvents. Scientific Reports, 2019, 9, 17219.	1.6	8
24	Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes. Antioxidants, 2019, 8, 30.	2.2	23
25	CHAPTER 11. Vitamin E Inspired Synthetic Antioxidants. Food Chemistry, Function and Analysis, 2019, , 151-164.	0.1	1
26	The Role of Onium Salts in the Proâ€Oxidant Effect of Gold Nanoparticles in Lipophilic Environments. Chemistry - A European Journal, 2018, 24, 9113-9119.	1.7	6
27	Methods To Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. Journal of Agricultural and Food Chemistry, 2018, 66, 3324-3329.	2.4	112
28	Antioxidant activity of nanomaterials. Journal of Materials Chemistry B, 2018, 6, 2036-2051.	2.9	162
29	From catecholâ€ŧocopherol to catecholâ€hydroquinone polyphenolic antioxidant hybrids. Heteroatom Chemistry, 2018, , e21466.	0.4	6
30	Singlet oxygen quenching- and chain-breaking antioxidant-properties of a quercetin dimer able to prevent age-related macular degeneration. Biophysical Chemistry, 2018, 243, 17-23.	1.5	3
31	Extremely Fast Hydrogen Atom Transfer between Nitroxides and HOO · Radicals and Implication for Catalytic Coantioxidant Systems. Journal of the American Chemical Society, 2018, 140, 10354-10362.	6.6	34
32	Improving the Frying Performance and Oxidative Stability of Refined Soybean Oil by Tocotrienolâ€Rich Unsaponifiable Matters of Kolkhoung (<i>Pistacia khinjuk</i>) Hull Oil. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 619-628.	0.8	15
33	Molecular basis for covalent inhibition of glyceraldehydeâ€3â€phosphate dehydrogenase by a 2â€phenoxyâ€1,4â€naphthoquinone small molecule. Chemical Biology and Drug Design, 2017, 90, 225-235.	1.5	16
34	Proton oupled Electron Transfer from Hydrogenâ€Bonded Phenols to Benzophenone Triplets. Chemistry - A European Journal, 2017, 23, 5299-5306.	1.7	10
35	Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chemistry, 2017, 232, 656-663.	4.2	98
36	Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds. Organic and Biomolecular Chemistry, 2017, 15, 6177-6184.	1.5	32

RICCARDO AMORATI

#	Article	IF	CITATIONS
37	Measuring Antioxidant Activity in Bioorganic Samples by the Differential Oxygen Uptake Apparatus: Recent Advances. Journal of Chemistry, 2017, 2017, 1-12.	0.9	29
38	The Antioxidant Activity of Quercetin in Water Solution. Biomimetics, 2017, 2, 9.	1.5	46
39	Peroxyl Radical Reactions in Water Solution: A Gym for Protonâ€Coupled Electronâ€Transfer Theories. Chemistry - A European Journal, 2016, 22, 7924-7934.	1.7	59
40	Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides. Journal of the American Chemical Society, 2016, 138, 5290-5298.	6.6	61
41	Hydroperoxyl Radicals (HOO [.]): Vitaminâ€E Regeneration and Hâ€Bond Effects on the Hydrogen Atom Transfer. Chemistry - A European Journal, 2016, 22, 16441-16445.	1.7	38
42	Role of Noncovalent Sulfur···Oxygen Interactions in Phenoxyl Radical Stabilization: Synthesis of Super Tocopherol-like Antioxidants. Organic Letters, 2016, 18, 5464-5467.	2.4	33
43	Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids and Surfaces B: Biointerfaces, 2016, 140, 505-513.	2.5	140
44	A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry B, 2016, 4, 2229-2241.	2.9	69
45	The effect of aromatic amines and phenols in the thiyl-induced reactions of polyunsaturated fatty acids. Radiation Physics and Chemistry, 2016, 124, 104-110.	1.4	6
46	ROS and Phenolic Compounds. , 2016, , 49-65.		2
47	A Straightforward Route to Potent Phenolic Chain-Breaking Antioxidants by Acid-Promoted Transposition of 1,4-Benzo[b]oxathiines to Dihydrobenzo[b]thiophenes. Chemistry - A European Journal, 2015, 21, 16639-16645.	1.7	12
48	Advantages and limitations of common testing methods for antioxidants. Free Radical Research, 2015, 49, 633-649.	1.5	333
49	Alditol thiacrowns via a ring-closing metathesis of carbohydrate-derived α,ω-dithioallylethers. Tetrahedron, 2015, 71, 5602-5609.	1.0	2
50	Resveratrol-based benzoselenophenes with an enhanced antioxidant and chain breaking capacity. Organic and Biomolecular Chemistry, 2015, 13, 5757-5764.	1.5	46
51	Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals. Journal of Organic Chemistry, 2015, 80, 10651-10659.	1.7	89
52	Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: Isolation, structure elucidation and antioxidant activity. Food Chemistry, 2015, 166, 397-406.	4.2	47
53	Linking an αâ€Tocopherol Derivative to Cobalt(0) Nanomagnets: Magnetically Responsive Antioxidants with Superior Radical Trapping Activity and Reduced Cytotoxicity. Chemistry - A European Journal, 2014, 20, 6857-6860.	1.7	24
54	From the dual function lead AP2238 to AP2469, a multiâ€ŧargetâ€directed ligand for the treatment of Alzheimer's disease. Pharmacology Research and Perspectives, 2014, 2, e00023.	1.1	44

#	Article	IF	CITATIONS
55	Redox Chemistry of Selenenic Acids and the Insight It Brings on Transition State Geometry in the Reactions of Peroxyl Radicals. Journal of the American Chemical Society, 2014, 136, 1570-1578.	6.6	48
56	Structural and Medium Effects on the Reactions of the Cumyloxyl Radical with Intramolecular Hydrogen Bonded Phenols. The Interplay Between Hydrogen-Bonding and Acid-Base Interactions on the Hydrogen Atom Transfer Reactivity and Selectivity. Journal of Organic Chemistry, 2014, 79, 6196-6205.	1.7	15
57	5- <i>S</i> -Lipoylhydroxytyrosol, a Multidefense Antioxidant Featuring a Solvent-Tunable Peroxyl Radical-Scavenging 3-Thio-1,2-dihydroxybenzene Motif. Journal of Organic Chemistry, 2013, 78, 9857-9864.	1.7	34
58	Antioxidant Activity of Essential Oils. Journal of Agricultural and Food Chemistry, 2013, 61, 10835-10847.	2.4	563
59	Red-Hair-Inspired Chromogenic System Based on a Proton-Switched Dehydrogenative Free-Radical Coupling. Organic Letters, 2013, 15, 4944-4947.	2.4	14
60	Reaction of benzoxanthene lignans with peroxyl radicals in polar and non-polar media: cooperative behaviour of OH groups. Organic and Biomolecular Chemistry, 2013, 11, 4291.	1.5	15
61	Multiâ€faceted Reactivity of Alkyltellurophenols Towards Peroxyl Radicals: Catalytic Antioxidant Versus Thiolâ€Depletion Effect. Chemistry - A European Journal, 2013, 19, 7510-7522.	1.7	62
62	3-Pyridinols and 5-pyrimidinols: Tailor-made for use in synergistic radical-trapping co-antioxidant systems. Beilstein Journal of Organic Chemistry, 2013, 9, 2781-2792.	1.3	32
63	Proton–electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols. Chemical Communications, 2012, 48, 11904.	2.2	33
64	The Reactivity of Air-Stable Pyridine- and Pyrimidine-Containing Diarylamine Antioxidants. Journal of Organic Chemistry, 2012, 77, 6895-6907.	1.7	40
65	Modulation of the antioxidant activity of phenols by non-covalent interactions. Organic and Biomolecular Chemistry, 2012, 10, 4147.	1.5	124
66	Hydrogen bond donating ability of meta and parahydroxy phenoxyl radicals. Organic and Biomolecular Chemistry, 2012, 10, 814-818.	1.5	12
67	The Reaction of Sulfenic Acids with Peroxyl Radicals: Insights into the Radicalâ€Trapping Antioxidant Activity of Plantâ€Derived Thiosulfinates. Chemistry - A European Journal, 2012, 18, 6370-6379.	1.7	59
68	Kinetic and thermodynamic aspects of the chain-breaking antioxidant activity of ascorbic acid derivatives in non-aqueous media. Organic and Biomolecular Chemistry, 2011, 9, 3792.	1.5	55
69	Amphiphilic antioxidants from "cashew nut shell liquid―(CNSL) waste. Organic and Biomolecular Chemistry, 2011, 9, 1352.	1.5	38
70	Optimization of the Antioxidant Activity of Hydroxyâ€Substituted 4â€Thiaflavanes: A Proofâ€ofâ€Concept Study. Chemistry - A European Journal, 2011, 17, 12396-12404.	1.7	35
71	Inside Cover: Optimization of the Antioxidant Activity of Hydroxyâ€Substituted 4â€Thiaflavanes: A Proofâ€ofâ€Concept Study (Chem. Eur. J. 44/2011). Chemistry - A European Journal, 2011, 17, 12214-12214.	1.7	0
72	Non-phenolic radical-trapping antioxidants. Journal of Pharmacy and Pharmacology, 2010, 61, 1435-1448.	1.2	59

#	Article	IF	CITATIONS
73	Base-Promoted Reaction of 5-Hydroxyuracil Derivatives with Peroxyl Radicals. Organic Letters, 2010, 12, 4130-4133.	2.4	29
74	Long-Lasting Antioxidant Protection: A Regenerable BHA Analogue. Journal of Organic Chemistry, 2010, 75, 7535-7541.	1.7	57
75	A Straightforward Heteroâ€Diels–Alder Approach to (2â€ <i>ambo</i> ,4′ <i>R</i> ,8′ <i>R</i>)″±/l²/l³/l´â€4â€Thiatocopherol. European Journal of Organic Ch 2010, 2218-2225.	emistøy, 20)1020
76	Organochalcogen Substituents in Phenolic Antioxidants. Organic Letters, 2010, 12, 2326-2329.	2.4	56
77	Catalytic Chain-Breaking Pyridinol Antioxidants. Journal of Organic Chemistry, 2010, 75, 716-725.	1.7	82
78	Influence of "Remote―Intramolecular Hydrogen Bonds on the Stabilities of Phenoxyl Radicals and Benzyl Cations. Journal of Organic Chemistry, 2010, 75, 4434-4440.	1.7	43
79	Hydrogen hyperfine splitting constants for phenoxyl radicals by DFT methods: regression analysis unravels hydrogen bonding effects. Organic and Biomolecular Chemistry, 2010, 8, 3136.	1.5	15
80	TEMPO reacts with oxygen-centered radicals under acidic conditions. Chemical Communications, 2010, 46, 5139.	2.2	65
81	Hydrogenâ€Atom Transfer Reactions from <i>ortho</i> â€Alkoxyâ€Substituted Phenols: An Experimental Approach. Chemistry - A European Journal, 2009, 15, 4402-4410.	1.7	42
82	Unexpected Acid Catalysis in Reactions of Peroxyl Radicals with Phenols. Angewandte Chemie - International Edition, 2009, 48, 8348-8351.	7.2	67
83	Synthesis and antioxidant activity of [60]fullerene–flavonoid conjugates. Tetrahedron, 2009, 65, 253-262.	1.0	32
84	Antioxidant activity of some simple phenols present in olive oil. Acta Alimentaria, 2009, 38, 427-436.	0.3	11
85	Non-phenolic radical-trapping antioxidants. Journal of Pharmacy and Pharmacology, 2009, 61, 1435-1448.	1.2	22
86	The Unusual Reaction of Semiquinone Radicals with Molecular Oxygen. Journal of Organic Chemistry, 2008, 73, 1830-1841.	1.7	117
87	Do garlic-derived allyl sulfides scavenge peroxyl radicals?. Organic and Biomolecular Chemistry, 2008, 6, 1103.	1.5	29
88	Effect of <i>ortho</i> -SR Groups on Oâ^'H Bond Strength and H-Atom Donating Ability of Phenols:  A Possible Role for the Tyr-Cys Link in Galactose Oxidase Active Site?. Journal of the American Chemical Society, 2008, 130, 237-244.	6.6	55
89	Regenerable Chain-Breaking 2,3-Dihydrobenzo[b]selenophene-5-ol Antioxidants. Journal of Organic Chemistry, 2007, 72, 2583-2595.	1.7	88
90	Antioxidant Profile of Ethoxyquin and Some of Its S, Se, and Te Analogues. Journal of Organic Chemistry, 2007, 72, 6046-6055.	1.7	68

RICCARDO AMORATI

#	Article	IF	CITATIONS
91	Kinetic and Thermochemical Study of the Antioxidant Activity of Sulfurâ€Containing Analogues of Vitamin E. Chemistry - A European Journal, 2007, 13, 8223-8230.	1.7	42
92	Intermolecular Hydrogen Bonding Modulates the Hydrogenâ€Atomâ€Donating Ability of Hydroquinones. Angewandte Chemie - International Edition, 2007, 46, 6336-6338.	7.2	21
93	Synthesis and Antioxidant Profile of all-rac-α-Selenotocopherol. Journal of Organic Chemistry, 2006, 71, 1033-1038.	1.7	81
94	Electronic and Hydrogen Bonding Effects on the Chain-Breaking Activity of Sulfur-Containing Phenolic Antioxidants. Journal of Organic Chemistry, 2006, 71, 6325-6332.	1.7	61
95	Solvent and pH Effects on the Antioxidant Activity of Caffeic and Other Phenolic Acids. Journal of Agricultural and Food Chemistry, 2006, 54, 2932-2937.	2.4	149
96	Synthesis and Antioxidant Activity of [60]Fullerene–BHT Conjugates. Chemistry - A European Journal, 2006, 12, 4646-4653.	1.7	66
97	Antioxidant and Antiradical Activity of Hydroxy-Substituted 4-Thiaflavanes. Helvetica Chimica Acta, 2006, 89, 2462-2472.	1.0	15
98	Antioxidant Activity of Hydroxystilbene Derivatives in Homogeneous Solution. Journal of Organic Chemistry, 2004, 69, 7101-7107.	1.7	69
99	Water Effect on the Oâ^'H Dissociation Enthalpy of Para-Substituted Phenols:Â a DFT Study. Journal of Organic Chemistry, 2004, 69, 5460-5467.	1.7	54
100	Hydroxylamines as Oxidation Catalysts:Â Thermochemical and Kinetic Studies. Journal of Organic Chemistry, 2003, 68, 1747-1754.	1.7	238
101	Modeling the Co-Antioxidant Behavior of Monofunctional Phenols. Applications to Some Relevant Compounds. Journal of Organic Chemistry, 2003, 68, 9654-9658.	1.7	63
102	Antioxidant Activity ofo-Bisphenols:Â the Role of Intramolecular Hydrogen Bonding. Journal of Organic Chemistry, 2003, 68, 5198-5204.	1.7	77
103	A Quantitative Approach to the Recycling of α-Tocopherol by Coantioxidants. Journal of Organic Chemistry, 2002, 67, 9295-9303.	1.7	60
104	Absolute rate constants for the reaction of peroxyl radicals with cardanol derivatives. Perkin Transactions II RSC, 2001, , 2142-2146.	1.1	73
105	Thermochemical and Kinetic Studies of a Bisphenol Antioxidant. Journal of Organic Chemistry, 2001, 66, 5456-5462.	1.7	50