Stuart Kornfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466927/publications.pdf

Version: 2024-02-01

44 papers 4,492 citations

218677 26 h-index 254184 43 g-index

44 all docs

44 docs citations

44 times ranked 4301 citing authors

#	Article	IF	CITATIONS
1	Structure and Function of the Mannose 6-Phosphate/Insulinlike Growth Factor II Receptors. Annual Review of Biochemistry, 1992, 61, 307-330.	11.1	1,039
2	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	2.5	818
3	Trafficking of lysosomal enzymes ¹ . FASEB Journal, 1987, 1, 462-468.	0.5	511
4	Binding of GGA2 to the Lysosomal Enzyme Sorting Motif of the Mannose 6-Phosphate Receptor. Science, 2001, 292, 1716-1718.	12.6	269
5	Cooperation of GGAs and AP-1 in Packaging MPRs at the Trans-Golgi Network. Science, 2002, 297, 1700-1703.	12.6	227
6	Lysosomal enzyme targeting. Biochemical Society Transactions, 1990, 18, 367-374.	3.4	172
7	The $\hat{l}^3/\hat{l}f1$ and $\hat{l}\pm/\hat{l}f2$ Hemicomplexes of Clathrin Adaptors AP-1 and AP-2 Harbor the Dileucine Recognition Site. Molecular Biology of the Cell, 2007, 18, 1887-1896.	2.1	153
8	Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell, 1990, 63, 281-291.	28.9	152
9	Mammalian GGAs act together to sort mannose 6-phosphate receptors. Journal of Cell Biology, 2003, 163, 755-766.	5.2	92
10	\hat{I}^3 Subunit of the AP-1 Adaptor Complex Binds Clathrin: Implications for Cooperative Binding in Coated Vesicle Assembly. Molecular Biology of the Cell, 2001, 12, 1925-1935.	2.1	68
11	Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8984-8989.	7.1	68
12	Functions of the α, β, and γ Subunits of UDP-GlcNAc:Lysosomal Enzyme N-Acetylglucosamine-1-phosphotransferase. Journal of Biological Chemistry, 2010, 285, 3360-3370.	3.4	62
13	Interaction of the Cation-dependent Mannose 6-Phosphate Receptor with GGA Proteins. Journal of Biological Chemistry, 2002, 277, 18477-18482.	3.4	59
14	Mice Lacking $\hat{l}\pm\hat{l}^2$ Subunits of GlcNAc-1-Phosphotransferase Exhibit Growth Retardation, Retinal Degeneration, and Secretory Cell Lesions. , 2007, 48, 5221.		58
15	Detection of mutagenic activity in human urine using mutant strains of salmonella typhimurium. Cancer, 1976, 38, 1253-1258.	4.1	56
16	Murine UDP-GlcNAc:Lysosomal Enzyme N-Acetylglucosamine-1-phosphotransferase Lacking the \hat{I}^3 -Subunit Retains Substantial Activity toward Acid Hydrolases. Journal of Biological Chemistry, 2007, 282, 27198-27203.	3.4	51
17	Selective action of the iminosugar isofagomine, a pharmacological chaperone for mutant forms of acid- \hat{l}^2 -glucosidase. Biochemical Pharmacology, 2007, 73, 1376-1383.	4.4	48
18	Disruption of the Manâ€6â€P Targeting Pathway in Mice Impairs Osteoclast Secretory Lysosome Biogenesis. Traffic, 2011, 12, 912-924.	2.7	43

#	Article	IF	CITATIONS
19	Analysis of Mucolipidosis II/III GNPTAB Missense Mutations Identifies Domains of UDP-GlcNAc:lysosomal Enzyme GlcNAc-1-phosphotransferase Involved in Catalytic Function and Lysosomal Enzyme Recognition. Journal of Biological Chemistry, 2015, 290, 3045-3056.	3.4	42
20	Human Mannose 6-Phosphate-uncovering Enzyme Is Synthesized as a Proenzyme That Is Activated by the Endoprotease Furin. Journal of Biological Chemistry, 2002, 277, 29737-29744.	3.4	41
21	A Novel Mutagenesis Strategy Identifies Distantly Spaced Amino Acid Sequences That Are Required for the Phosphorylation of Both the Oligosaccharides of Procathepsin D by N-Acetylglucosamine 1-Phosphotransferase. Journal of Biological Chemistry, 1995, 270, 170-179.	3.4	40
22	The Phosphorylation of Bovine DNase I Asn-linked Oligosaccharides Is Dependent on Specific Lysine and Arginine Residues. Journal of Biological Chemistry, 1997, 272, 19408-19412.	3.4	39
23	Multiple Domains of GlcNAc-1-phosphotransferase Mediate Recognition of Lysosomal Enzymes. Journal of Biological Chemistry, 2016, 291, 8295-8307.	3.4	39
24	A splicing mutation in the ?/? GlcNAc-1-phosphotransferase gene results in an adult onset form of mucolipidosis III associated with sensory neuropathy and cardiomyopathy. American Journal of Medical Genetics, Part A, 2005, 132A, 369-375.	1.2	36
25	GGA1 Interacts with the Adaptor Protein AP-1 through a WNSF Sequence in Its Hinge Region. Journal of Biological Chemistry, 2004, 279, 17411-17417.	3.4	34
26	Identification of the Minimal Lysosomal Enzyme Recognition Domain in Cathepsin D. Journal of Biological Chemistry, 2005, 280, 33318-33323.	3.4	34
27	Vacuolization of mucolipidosis type II mouse exocrine gland cells represents accumulation of autolysosomes. Molecular Biology of the Cell, 2011, 22, 1135-1147.	2.1	27
28	Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 5, 59-65.	4.1	27
29	Mice Lacking Mannose 6-Phosphate Uncovering Enzyme Activity Have a Milder Phenotype than Mice Deficient for $\langle i \rangle N < i \rangle$ -Acetylglucosamine-1-Phosphotransferase Activity. Molecular Biology of the Cell, 2009, 20, 4381-4389.	2.1	25
30	Analysis of Gga Null Mice Demonstrates a Non-Redundant Role for Mammalian GGA2 during Development. PLoS ONE, 2012, 7, e30184.	2.5	23
31	A Lifetime of Adventures in Glycobiology. Annual Review of Biochemistry, 2018, 87, 1-21.	11.1	23
32	Neurologic Abnormalities in Mouse Models of the Lysosomal Storage Disorders Mucolipidosis II and Mucolipidosis III \hat{I}^3 . PLoS ONE, 2014, 9, e109768.	2.5	20
33	Steps in the Phosphorylation of the High Mannose Oligosaccharides of Lysosomal Enzymes. Novartis Foundation Symposium, 1982, , 138-156.	1.1	19
34	The lysosomal enzyme receptor protein (LERP) is not essential, but is implicated in lysosomal function in Drosophila melanogaster. Biology Open, 2015, 4, 1316-1325.	1.2	17
35	A weak COPI binding motif in the cytoplasmic tail of SARSâ€CoVâ€2 spike glycoprotein is necessary for its cleavage, glycosylation, and localization. FEBS Letters, 2021, 595, 1758-1767.	2.8	16
36	Impact of Genetic Background on Neonatal Lethality of <i>Gga2</i> Gene-Trap Mice. G3: Genes, Genomes, Genetics, 2014, 4, 885-890.	1.8	8

3

#	Article	IF	CITATIONS
37	Role of spacerâ€1 in the maturation and function of Glc <scp>NA</scp> câ€1â€phosphotransferase. FEBS Letters, 2017, 591, 47-55.	2.8	8
38	Structure and Function of the DUF2233 Domain in Bacteria and in the Human Mannose 6-Phosphate Uncovering Enzyme. Journal of Biological Chemistry, 2013, 288, 16789-16799.	3.4	7
39	Structure of the human GlcNAc-1-phosphotransferase $\hat{l}\pm\hat{l}^2$ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nature Structural and Molecular Biology, 2022, 29, 348-356.	8.2	6
40	Inactivation of the three GGA genes in HeLa cells partially compromises lysosomal enzyme sorting. FEBS Open Bio, 2021, 11, 367-374.	2.3	5
41	Tuberous sclerosis, polycystic kidney disease and mucolipidosis III gamma caused by a microdeletion unmasking a recessive mutation. American Journal of Medical Genetics, Part A, 2015, 167, 2844-2846.	1.2	4
42	Mucolipidosis III GNPTG Missense Mutations Cause Misfolding of the \hat{l}^3 Subunit of GlcNAc-1-Phosphotransferase. Human Mutation, 2016, 37, 623-626.	2.5	4
43	STEPS IN THE FORMATION OF ASPARAGINE-LINKED CARBOHYDRATE MOIETIES. Biochemical Society Transactions, 1981, 9, 11P-11P.	3.4	1
44	Diseaseâ€causing missense mutations within the Nâ€terminal transmembrane domain of GlcNAcâ€1â€phosphotransferase impair endoplasmic reticulum translocation or Golgi retention. Human Mutation, 2020, 41, 1321-1328.	2.5	1