## Hoonkyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466783/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Molecular beam epitaxial growth of Sb <sub>2</sub> Te <sub>3</sub> –Bi <sub>2</sub> Te <sub>3</sub><br>lateral heterostructures. 2D Materials, 2022, 9, 025006.                                                              | 2.0 | 6         |
| 2  | Boronâ€Rich Boron Nitride Nanotubes as Highly Selective Adsorbents for Selected Diatomic Air<br>Pollutants: A DFT Study. Advanced Theory and Simulations, 2022, 5, .                                                         | 1.3 | 8         |
| 3  | Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano, 2022,<br>16, 2176-2187.                                                                                                          | 7.3 | 42        |
| 4  | High-capacity reversible hydrogen storage properties of metal-decorated nitrogenated holey graphenes. International Journal of Hydrogen Energy, 2022, 47, 10654-10664.                                                       | 3.8 | 22        |
| 5  | Two-Dimensional Bismuthene Nanosheets for Selective Detection of Toxic Gases. ACS Applied Nano<br>Materials, 2022, 5, 2984-2993.                                                                                             | 2.4 | 29        |
| 6  | Highly Efficient Invisible TaO <sub><i>x</i></sub> /ZTO Bilayer Memristor for Neuromorphic Computing<br>and Image Sensing. ACS Applied Electronic Materials, 2022, 4, 2180-2190.                                             | 2.0 | 20        |
| 7  | Selective decoration of nitrogenated holey graphene (C2N) with titanium clusters for enhanced hydrogen storage application. International Journal of Hydrogen Energy, 2021, 46, 7371-7380.                                   | 3.8 | 63        |
| 8  | Density Functional Theory Study of Li-Functionalized Nanoporous R-Graphyne–Metal–Organic<br>Frameworks for Reversible Hydrogen Storage. ACS Applied Nano Materials, 2021, 4, 3949-3957.                                      | 2.4 | 16        |
| 9  | Two-dimensional Janus monolayers of MoSSe as promising sensor towards selected adulterants compounds. Applied Surface Science, 2021, 542, 148590.                                                                            | 3.1 | 29        |
| 10 | Density Functional Theory Study on Sensing and Dielectric Properties of Arsenic Trisulfide<br>Nanosheets for Detecting Volatile Organic Compounds. ACS Applied Nano Materials, 2021, 4, 5444-5453.                           | 2.4 | 9         |
| 11 | Unidirectional Alignment of AgCN Microwires on Distorted Transition Metal Dichalcogenide<br>Crystals. ACS Applied Materials & Interfaces, 2021, 13, 8727-8735.                                                               | 4.0 | 3         |
| 12 | Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal<br>Conversion for Large-Scale Ultrathin Flexible Electronics. Nano Letters, 2021, 21, 9153-9163.                              | 4.5 | 29        |
| 13 | Band gap engineering of 2D biphenylene carbon sheets with hydrogenation. Journal of the Korean<br>Physical Society, 2021, 79, 846-850.                                                                                       | 0.3 | 11        |
| 14 | Conversion of CO <sub>2</sub> into Formic Acid on Transition Metal-Porphyrin-like Graphene: First<br>Principles Calculations. ACS Omega, 2021, 6, 27045-27051.                                                               | 1.6 | 3         |
| 15 | Tunning Hydrogen Storage Properties of Carbon Ene–Yne Nanosheets through Selected Foreign Metal<br>Functionalization. Journal of Physical Chemistry C, 2020, 124, 16827-16837.                                               | 1.5 | 15        |
| 16 | Selfâ€Powered Gas Sensors: 2D Transition Metal Dichalcogenide Heterostructures for p―and nâ€Type<br>Photovoltaic Selfâ€Powered Gas Sensor (Adv. Funct. Mater. 43/2020). Advanced Functional Materials,<br>2020, 30, 2070284. | 7.8 | 1         |
| 17 | 2D Transition Metal Dichalcogenide Heterostructures for p―and nâ€Type Photovoltaic Selfâ€Powered Gas<br>Sensor. Advanced Functional Materials, 2020, 30, 2003360                                                             | 7.8 | 102       |
| 18 | Efficient Sensing Properties of Aluminum Nitride Nanosheets toward Toxic Pollutants under Gated<br>Electric Field. ACS Applied Electronic Materials, 2020, 2, 1645-1652.                                                     | 2.0 | 15        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                    | IF                     | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|
| 19 | Doping effect in graphene-graphene oxide interlayer. Scientific Reports, 2020, 10, 8258.                                                                                                                                                                                                                                                                   | 1.6                    | 25            |
| 20 | Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon, 2020, 163, 213-223.                                                                                                                                                                                                   | 5.4                    | 77            |
| 21 | Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution.<br>Science, 2020, 368, 60-67.                                                                                                                                                                                                                         | 6.0                    | 103           |
| 22 | Physisorption and Chemisorption of SF6 by Transition Metal-Porphyrin Structure Embedded on<br>Graphene Surface with Different Hapticities. Journal of the Korean Physical Society, 2020, 76, 1001-1004.                                                                                                                                                    | 0.3                    | 1             |
| 23 | Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. Physical Chemistry Chemical Physics, 2020, 22, 15675-15682.                                                                                                                                                                            | 1.3                    | 18            |
| 24 | Highly sensitive and selective sensing properties of modified green phosphorene monolayers towards<br>SF6 decomposition gases. Applied Surface Science, 2020, 512, 145641.                                                                                                                                                                                 | 3.1                    | 28            |
| 25 | Hydrogen storage capacity of low-lying isomer of <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>altimg="si1.svg"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mtext>C</mml:mtext></mml:mrow><mml:mrow><br/>functionalized with Ti. International Journal of Hydrogen Energy, 2020, 45, 9936-9945.</mml:mrow></mml:msub></mml:mrow></mml:math<br> | < <sup>3</sup> t8ml:mn | > <b>5</b> 94 |
| 26 | Universal Oriented van der Waals Epitaxy of 1D Cyanide Chains on Hexagonal 2D Crystals. Advanced<br>Science, 2020, 7, 1900757.                                                                                                                                                                                                                             | 5.6                    | 13            |
| 27 | Graphene-Based Ultrasensitive Strain Sensors. ACS Applied Electronic Materials, 2020, 2, 523-528.                                                                                                                                                                                                                                                          | 2.0                    | 11            |
| 28 | Competition between Hückel's Rule and Jahn–Teller Distortion in Small Carbon Rings: A Quantum<br>Monte Carlo Study. Journal of Physical Chemistry A, 2020, 124, 3636-3640.                                                                                                                                                                                 | 1.1                    | 13            |
| 29 | Dielectric Constant and van der Waals Interlayer Interaction of MoS2-Graphene Heterostructures. ,<br>2020, , .                                                                                                                                                                                                                                             |                        | 5             |
| 30 | Sensitivity enhancement of stanene towards toxic SO2 and H2S. Applied Surface Science, 2019, 495, 143622.                                                                                                                                                                                                                                                  | 3.1                    | 17            |
| 31 | Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide. Nanoscale, 2019, 11, 844-850<br>Reversible hydrogen storage properties of defect-engineered <mml:math< td=""><td>2.8</td><td>17</td></mml:math<>                                                                                           | 2.8                    | 17            |
| 32 | xmlns:mml="http://www.w3.org/1998/Math/MathML"<br>altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi<br>mathvariant="bold"&gt;C</mml:mi<br></mml:mrow><mml:mrow><mml:mn<br>mathvariant="bold"&gt;4</mml:mn<br></mml:mrow></mml:msub><mml:mi< td=""><td>5.4</td><td>69</td></mml:mi<></mml:mrow>                                                       | 5.4                    | 69            |
| 33 | mathvariant="bold">N nanosheets under ambient conditions.<br>Enhancement in hydrogen storage capacities of light metal functionalized Boron–Graphdiyne<br>nanosheets. Carbon, 2019, 147, 199-205.                                                                                                                                                          | 5.4                    | 100           |
| 34 | Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide<br>Nanoparticles. Journal of the American Chemical Society, 2019, 141, 7037-7045.                                                                                                                                                                                  | 6.6                    | 58            |
| 35 | Pressure-induced phase transitions and superconductivity in magnesium carbides. Scientific Reports, 2019, 9, 20253.                                                                                                                                                                                                                                        | 1.6                    | 4             |
| 36 | Theoretical investigation of the vertical dielectric screening dependence on defects for few-layered van der Waals materials. RSC Advances, 2019, 9, 40309-40315.                                                                                                                                                                                          | 1.7                    | 12            |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Raman Spectra Shift of Few-Layer IV-VI 2D Materials. Scientific Reports, 2019, 9, 19826.                                                                                                                   | 1.6 | 36        |
| 38 | Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution<br>Liquid-Phase Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 763-768.                 | 6.6 | 76        |
| 39 | Off-Plane Dielectric Screening of Few-Layer Graphdiyne and Its Family. ACS Applied Materials &<br>Interfaces, 2019, 11, 2571-2578.                                                                         | 4.0 | 13        |
| 40 | Enhanced Hydrogen-Storage Capacity and Structural Stability of an Organic Clathrate Structure with<br>Fullerene (C <sub>60</sub> ) Guests and Lithium Doping. Chemistry of Materials, 2018, 30, 3028-3039. | 3.2 | 22        |
| 41 | Fe–Porphyrin-like Nanostructures for Selective Ammonia Capture under Humid Conditions. Journal of<br>Physical Chemistry C, 2018, 122, 2046-2052.                                                           | 1.5 | 7         |
| 42 | Design of 2D massless Dirac fermion systems and quantum spin Hall insulators based on sp–sp2<br>carbon sheets. Npj Computational Materials, 2018, 4, .                                                     | 3.5 | 20        |
| 43 | One-Dimensional Assembly on Two-Dimensions: AuCN Nanowire Epitaxy on Graphene for Hybrid<br>Phototransistors. Nano Letters, 2018, 18, 6214-6221.                                                           | 4.5 | 30        |
| 44 | sp–sp <sup>2</sup> Carbon Sheets as Promising Anode Materials for Na-Ion Batteries. ACS Omega, 2018,<br>3, 14477-14481.                                                                                    | 1.6 | 6         |
| 45 | Control of CO <sub>2</sub> Capture Process on Transition-Metal-Porphyrin-like Graphene with<br>Mechanical Strain. ACS Omega, 2018, 3, 10554-10563.                                                         | 1.6 | 7         |
| 46 | Nature of Interlayer Binding and Stacking of sp–sp <sup>2</sup> Hybridized Carbon Layers: A Quantum<br>Monte Carlo Study. Journal of Chemical Theory and Computation, 2017, 13, 5639-5646.                 | 2.3 | 27        |
| 47 | Vertical dielectric screening of few-layer van der Waals semiconductors. Nanoscale, 2017, 9,<br>14540-14547.                                                                                               | 2.8 | 20        |
| 48 | Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide. Physical Chemistry Chemical Physics, 2016, 18, 29086-29091.                                                           | 1.3 | 15        |
| 49 | Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface<br>Functionalization. ACS Nano, 2016, 10, 9287-9296.                                                         | 7.3 | 351       |
| 50 | Steric effects of CO 2 binding to transition metal-benzene complexes: AÂfirst-principles study. Current<br>Applied Physics, 2016, 16, 1124-1129.                                                           | 1.1 | 8         |
| 51 | High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.<br>Scientific Reports, 2016, 6, 21788.                                                                | 1.6 | 31        |
| 52 | Wedge energy bands of monolayer black phosphorus: a first-principles study. Journal of Physics<br>Condensed Matter, 2016, 28, 305301.                                                                      | 0.7 | 1         |
| 53 | Synthesis and mechanistic study of <i>in situ</i> halogen/nitrogen dual-doping in graphene tailored by stepwise pyrolysis of ionic liquids. Nanotechnology, 2015, 26, 115601.                              | 1.3 | 7         |
| 54 | Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments.<br>Journal of the Korean Physical Society, 2015, 66, 1649-1655.                                                | 0.3 | 25        |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10,<br>423-428.                                                                                          | 15.6 | 75        |
| 56 | Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene. Scientific Reports, 2015, 5, 9390.                                | 1.6  | 10        |
| 57 | Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene. Physical Review X, 2014, 4, .                                                                                                 | 2.8  | 35        |
| 58 | DFT and TB study of the geometry of hydrogen adsorbed on graphynes. Journal of Physics Condensed<br>Matter, 2014, 26, 385301.                                                                         | 0.7  | 2         |
| 59 | Cohesion energetics of carbon allotropes: Quantum Monte Carlo study. Journal of Chemical Physics, 2014, 140, 114702.                                                                                  | 1.2  | 166       |
| 60 | Tailoring the Electronic Band Gap of Graphyne. Journal of Physical Chemistry C, 2014, 118, 2463-2468.                                                                                                 | 1.5  | 34        |
| 61 | Widely tunable band gaps of graphdiyne: an ab initio study. Physical Chemistry Chemical Physics, 2014,<br>16, 8935-8939.                                                                              | 1.3  | 56        |
| 62 | Origin of Poor Cyclability in Li <sub>2</sub> MnSiO <sub>4</sub> from First-Principles Calculations:<br>Layer Exfoliation and Unstable Cycled Structure. Chemistry of Materials, 2014, 26, 3896-3899. | 3.2  | 45        |
| 63 | Semiclassical approximation solved by Monte Carlo integration as an efficient impurity solver for dynamical mean field theory and its cluster extensions. Physical Review B, 2013, 88, .              | 1.1  | 4         |
| 64 | Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope. ACS Nano, 2013, 7,<br>10075-10082.                                                                                          | 7.3  | 375       |
| 65 | Carbyne bundles for a lithium-ion-battery anode. Journal of the Korean Physical Society, 2013, 63, 1014-1018.                                                                                         | 0.3  | 5         |
| 66 | Multilayer Graphynes for Lithium Ion Battery Anode. Journal of Physical Chemistry C, 2013, 117,<br>6919-6923.                                                                                         | 1.5  | 189       |
| 67 | Exotic Geometrical and Electronic Properties in Hydrogenated Graphyne. Journal of Physical Chemistry C, 2013, 117, 11960-11967.                                                                       | 1.5  | 41        |
| 68 | Graphdiyne as a high-capacity lithium ion battery anode material. Applied Physics Letters, 2013, 103, .                                                                                               | 1.5  | 104       |
| 69 | Thermodynamically Stable Calcium-Decorated Graphyne as a Hydrogen Storage Medium. Journal of Physical Chemistry C, 2012, 116, 20220-20224.                                                            | 1.5  | 147       |
| 70 | High electric field enhancement near electron-doped semiconductor nanoribbons. Chemical Physics<br>Letters, 2012, 546, 99-105.                                                                        | 1.2  | 0         |
| 71 | Defect and impurity properties of hexagonal boron nitride: A first-principles calculation. Physical Review B, 2012, 86, .                                                                             | 1.1  | 187       |
| 72 | Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules. Carbon, 2012, 50, 851-856.                           | 5.4  | 20        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures.<br>Nano Research, 2012, 5, 62-72.                                        | 5.8 | 62        |
| 74 | Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nature Physics, 2011, 7, 43-47.                                                            | 6.5 | 233       |
| 75 | Calcium-Decorated Carbyne Networks as Hydrogen Storage Media. Nano Letters, 2011, 11, 2660-2665.                                                                             | 4.5 | 98        |
| 76 | Chemical engineering of adamantane by lithium functionalization: A first-principles density functional theory study. Physical Review B, 2011, 83, .                          | 1.1 | 17        |
| 77 | Enhancement of adsorption on a boron-doped carbon system for hydrogen storage. Solid State Communications, 2010, 150, 1959-1962.                                             | 0.9 | 10        |
| 78 | Beryllium-dihydrogen complexes on nanostructures. Applied Physics Letters, 2010, 96, .                                                                                       | 1.5 | 14        |
| 79 | ReleasingH2molecules with a partial pressure difference without the use of temperature. Physical Review B, 2010, 82, .                                                       | 1.1 | 3         |
| 80 | Selective functionalization of halogens on zigzag graphene nanoribbons: A route to the separation of zigzag graphene nanoribbons. Applied Physics Letters, 2010, 97, 233101. | 1.5 | 23        |
| 81 | Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations. Journal of Physics Condensed Matter, 2010, 22, 352205.                         | 0.7 | 11        |
| 82 | Intrinsic half-metallic BN–C nanotubes. Applied Physics Letters, 2010, 97, 043115.                                                                                           | 1.5 | 54        |
| 83 | <i>Ab initio</i> study of beryllium-decorated fullerenes for hydrogen storage. Journal of Applied Physics, 2010, 107, .                                                      | 1.1 | 22        |
| 84 | Calcium-Decorated Graphene-Based Nanostructures for Hydrogen Storage. Nano Letters, 2010, 10,<br>793-798.                                                                    | 4.5 | 331       |
| 85 | Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: First-principles calculations. Physical Review B, 2009, 80, .                                         | 1.1 | 148       |
| 86 | Titanium-functional group complexes for high-capacity hydrogen storage materials. Solid State<br>Communications, 2008, 146, 431-434.                                         | 0.9 | 30        |
| 87 | Hydrogen storage using functionalized saturated hydrocarbons. Solid State Communications, 2008, 147, 419-422.                                                                | 0.9 | 14        |
| 88 | Hydrogen storage in alkali-metal-decorated organic molecules. Applied Physics Letters, 2008, 93, 063107.                                                                     | 1.5 | 28        |
| 89 | Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes. Physical Review B, 2008, 77, .                                                               | 1.1 | 19        |
| 90 | <i>Ab initio</i> study of dihydrogen binding in metal-decorated polyacetylene for hydrogen storage.<br>Physical Review B, 2007, 76, .                                        | 1.1 | 104       |

| #  | Article                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers. Physical<br>Review Letters, 2006, 97, 056104. | 2.9 | 192       |