AgustÃ-n R. GonzÃ;lez-Elipe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466776/publications.pdf

Version: 2024-02-01

		26630	39675
510	16,047	56	94
papers	citations	h-index	g-index
532	532	532	16819
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016, 76, 59-153.	32.8	564
2	Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. Journal of Physical Chemistry B, 2002, 106, 6921-6929.	2.6	526
3	Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass,) Tj ETQq1 1 Applied Catalysis B: Environmental, 1995, 7, 49-63.	0.784314 20.2	rgBT /Overlo 475
4	Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Applied Catalysis B: Environmental, 1997, 13, 219-228.	20.2	415
5	The state of the oxygen at the surface of polycrystalline cobalt oxide. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71, 61-71.	1.7	319
6	XPS study of oxidation processes of CeOx defective layers. Applied Surface Science, 2000, 158, 164-171.	6.1	248
7	XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon, 2007, 45, 89-96.	10.3	222
8	Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. The Journal of Physical Chemistry, 1995, 99, 1484-1490.	2.9	209
9	Structural, Optical, and Photoelectrochemical Properties of Mn+â^'TiO2 Model Thin Film Photocatalysts. Journal of Physical Chemistry B, 2004, 108, 17466-17476.	2.6	164
10	Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 2.—Study of radical intermediates by electron paramagnetic resonance. Journal of the Chemical Society Faraday Transactions I, 1979, 75, 748.	1.0	140
11	An update of argon inelastic cross sections for plasma discharges. Journal Physics D: Applied Physics, 2005, 38, 1588-1598.	2.8	129
12	Response of Nanoparticle-Based One-Dimensional Photonic Crystals to Ambient Vapor Pressure. Langmuir, 2008, 24, 9135-9139.	3.5	114
13	Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. Journal of Power Sources, 2007, 169, 140-143.	7.8	112
14	Sorption Properties of Mesoporous Multilayer Thin Films. Journal of Physical Chemistry C, 2008, 112, 3157-3163.	3.1	110
15	Spectroscopic characterization of Tio2/SiO2 catalysts. Journal of Catalysis, 1988, 112, 489-494.	6.2	109
16	Efficient synthesis of ammonia from N ₂ and H ₂ alone in a ferroelectric packed-bed DBD reactor. Plasma Sources Science and Technology, 2015, 24, 065011.	3.1	106
17	Structure determination of Ni(111)c(4 \tilde{A} — 2)-CO and its implications for the interpretation of vibrational spectroscopic data. Surface Science, 1994, 311, 337-348.	1.9	105
18	Use of factor analysis and XPS to study defective nickel oxide. The Journal of Physical Chemistry, 1992, 96, 3080-3086.	2.9	100

#	Article	IF	CITATIONS
19	Compositional changes induced by 3.5 keV Ar+ ion bombardment in Ni-Ti oxide systems. Surface Science, 1989, 220, 368-380.	1.9	97
20	XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool. Applied Surface Science, 2005, 252, 1417-1429.	6.1	96
21	Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochimica Acta, 2016, 201, 38-44.	5.2	95
22	XPS Study of Interface and Ligand Effects in Supported Cu2O and CuO Nanometric Particles. Journal of Physical Chemistry B, 2005, 109, 7758-7765.	2.6	94
23	Enhanced gas sensing performance of TiO2 functionalized magneto-optical SPR sensors. Journal of Materials Chemistry, 2011, 21, 16049.	6.7	91
24	A photoelectron diffraction study of the structure of PF3 adsorbed on Ni{in111}. Chemical Physics Letters, 1992, 199, 625-630.	2.6	90
25	Single local site structure for vibrationally distinct adsorption states: NO on Ni(111). Chemical Physics Letters, 1992, 192, 259-264.	2.6	90
26	Reversible Superhydrophobic to Superhydrophilic Conversion of Ag@TiO2 Composite Nanofiber Surfaces. Langmuir, 2008, 24, 8021-8026.	3.5	87
27	Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2. Surface Science, 1996, 366, 545-555.	1.9	86
28	XPS study of the surface carbonation/hydroxylation state of metal oxides. Applied Surface Science, 1990, 45, 103-108.	6.1	83
29	Control of the stoichiometry in the deposition of cobalt oxides on SiO2. Surface and Interface Analysis, 1998, 26, 62-71.	1.8	82
30	Reactivity of lanthanum substituted cobaltites toward carbon particles. Journal of Catalysis, 2008, 257, 334-344.	6.2	81
31	Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Scientific Reports, 2017, 7, 5924.	3.3	81
32	Is the frequency of the internal mode of an adsorbed diatomic molecule a reliable guide to its local adsorption site?. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 75-83.	1.7	80
33	Structural determination of a molecular adsorbate by photoelectron diffraction: Ammonia on Ni{111}. Physical Review B, 1992, 46, 4836-4843.	3.2	74
34	Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85, 4004-4006.	3.3	74
35	Photoefficiency and Optical, Microstructural, and Structural Properties of TiO2Thin Films Used as Photoanodes. Langmuir, 2004, 20, 1688-1697.	3.5	73
36	Interpretation of the Binding Energy and Auger Parameter Shifts Found by XPS for TiO2Supported on Different Surfaces. The Journal of Physical Chemistry, 1996, 100, 16255-16262.	2.9	72

#	Article	IF	CITATIONS
37	Effect of Visible and UV Illumination on the Water Contact Angle of TiO2Thin Films with Incorporated Nitrogen. Journal of Physical Chemistry C, 2007, 111, 1801-1808.	3.1	71
38	Growth regimes of porous gold thin films deposited by magnetron sputtering at oblique incidence: from compact to columnar microstructures. Nanotechnology, 2013, 24, 045604.	2.6	71
39	Oxidation and diffusion processes in nickel-titanium oxide systems. Surface Science, 1993, 295, 402-410.	1.9	70
40	Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3426.	30.8	70
41	Chemical changes induced by sputtering in TiO2 and some selected titanates as observed by X-ray absorption spectroscopy. Surface Science, 1993, 290, 427-435.	1.9	68
42	SiO2/TiO2 thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition. Thin Solid Films, 2006, 500, 19-26.	1.8	67
43	Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD. Surface and Coatings Technology, 2002, 151-152, 289-293.	4.8	66
44	Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films. Journal of Applied Physics, 2008, 103, .	2.5	66
45	Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics, 2005, 97, 113714.	2.5	65
46	TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition. Journal of Materials Chemistry, 2010, 20, 6408.	6.7	64
47	Differences in n-type doping efficiency between Al- and Ga-ZnO films. Journal of Applied Physics, 2013, 113, .	2.5	64
48	Chemical State of Nitrogen and Visible Surface and Schottky Barrier Driven Photoactivities of N-Doped TiO ₂ Thin Films. Journal of Physical Chemistry C, 2009, 113, 13341-13351.	3.1	63
49	Evaluation of Different Dielectric Barrier Discharge Plasma Configurations As an Alternative Technology for Green C ₁ Chemistry in the Carbon Dioxide Reforming of Methane and the Direct Decomposition of Methanol. Journal of Physical Chemistry A, 2010, 114, 4009-4016.	2.5	62
50	Correlation lengths, porosity and water adsorption in TiO2thin films prepared by glancing angle deposition. Nanotechnology, 2012, 23, 205701.	2.6	61
51	The electronic structure of mesoscopic NiO particles. Chemical Physics Letters, 1993, 208, 460-464.	2.6	60
52	Electronic structure of stoichiometric andAr+-bombardedZrO2determined by resonant photoemission. Physical Review B, 1995, 52, 11711-11720.	3.2	60
53	Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film- electrodes prepared by physical vapor deposition at oblique angles. Electrochimica Acta, 2017, 235, 534-542.	5.2	60
54	Use of carbon monoxide and third-derivative EPR spectra to probe the coordination of surface vanadium(4+) ions on reduced vanadium pentoxide (V2O5)/silicon dioxide catalysts. The Journal of Physical Chemistry, 1986, 90, 618-621.	2.9	59

#	Article	IF	CITATIONS
55	In Situ EXAFS Study of the Photocatalytic Reduction and Deposition of Gold on Colloidal Titania. The Journal of Physical Chemistry, 1995, 99, 3303-3309.	2.9	59
56	Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach. Journal of Applied Physics, 2006, 99, 033104.	2.5	59
57	Perovskite Solar Cells Based on Nanocolumnar Plasmaâ€Deposited ZnO Thin Films. ChemPhysChem, 2014, 15, 1148-1153.	2.1	59
58	About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor. Plasma Processes and Polymers, 2017, 14, 1600081.	3.0	58
59	Characterisation of iron/titanium oxide photocatalysts. Part 2.—Surface studies. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2257-2264.	1.7	56
60	Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2842-2848.	2.1	56
61	Structure, microstructure and electronic characterisation of the Al2O3/SiO2 interface by electron spectroscopies. Surface Science, 2000, 457, 199-210.	1.9	56
62	Type of Plasmas and Microstructures of TiO[sub 2] Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition. Journal of the Electrochemical Society, 2007, 154, P152.	2.9	56
63	Nanoindentation of TiO ₂ thin films with different microstructures. Journal Physics D: Applied Physics, 2009, 42, 145305.	2.8	56
64	A transparent TMPyP/TiO2 composite thin film as an HCl sensitive optochemical gas sensor. Sensors and Actuators B: Chemical, 2010, 150, 764-769.	7.8	56
65	Quantification of the H content in diamondlike carbon and polymeric thin films by reflection electron energy loss spectroscopy. Applied Physics Letters, 2005, 87, 084101.	3.3	55
66	Growth of Crystalline TiO2 by Plasma Enhanced Chemical Vapor Deposition. Crystal Growth and Design, 2009, 9, 2868-2876.	3.0	54
67	Nanostructured Ti thin films by magnetron sputtering at oblique angles. Journal Physics D: Applied Physics, 2016, 49, 045303.	2.8	54
68	Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD. Thin Solid Films, 2001, 401, 150-158.	1.8	53
69	Chemical stability of Sin+ species in SiOx (x<2) thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 136-144.	2.1	53
70	Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts. Journal of Catalysis, 2007, 247, 288-297.	6.2	51
71	Wetting angles and photocatalytic activities of illuminated TiO2 thin films. Catalysis Today, 2009, 143, 347-354.	4.4	51
72	Low Temperature Production of Formaldehyde from Carbon Dioxide and Ethane by Plasma-Assisted Catalysis in a Ferroelectrically Moderated Dielectric Barrier Discharge Reactor. ACS Catalysis, 2014, 4, 402-408.	11.2	51

#	Article	IF	CITATIONS
73	Diffraction and XPS Studies of Misfit Layer Chalcogenides Intercalated with Cobaltocene. Chemistry of Materials, 1995, 7, 1576-1582.	6.7	50
74	Sonogashira Cross-Coupling and Homocoupling on a Silver Surface: Chlorobenzene and Phenylacetylene on Ag(100). Journal of the American Chemical Society, 2015, 137, 940-947.	13.7	50
75	Laser Treatment of Ag@ZnO Nanorods as Long-Life-Span SERS Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 2331-2339.	8.0	50
76	Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules, 2021, 26, 6326.	3.8	50
77	Bonding-state characterization of constituent elements in phyllosilicate minerals by XPS and NMR. The Journal of Physical Chemistry, 1988, 92, 3471-3476.	2.9	49
78	An XPS study of the Ar+-induced reduction of Ni2+ in NiO and Ni-Si oxide systems. Applied Surface Science, 1991, 51, 19-26.	6.1	49
79	Interface effects for metal oxide thin films deposited on another metal oxide I. SnO deposited on SiO2. Surface Science, 1996, 350, 123-135.	1.9	49
80	Determination of texture by infrared spectroscopy in titanium oxide–anatase thin films. Journal of Applied Physics, 2003, 93, 4634-4645.	2.5	49
81	Electrochromic Behavior of W _{<i>x</i>} Si _{<i>y</i>} O _{<i>z</i>} Thin Films Prepared by Reactive Magnetron Sputtering at Normal and Glancing Angles. ACS Applied Materials & Interfaces, 2012, 4, 628-638.	8.0	49
82	Oxygen Optical Sensing in Gas and Liquids with Nanostructured ZnO Thin Films Based on Exciton Emission Detection. Journal of Physical Chemistry C, 2014, 118, 9852-9859.	3.1	48
83	Chemistry and Electrocatalytic Activity of Nanostructured Nickel Electrodes for Water Electrolysis. ACS Catalysis, 2020, 10, 6159-6170.	11.2	48
84	Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2. Solar Energy Materials and Solar Cells, 2006, 90, 2944-2949.	6.2	47
85	Active and Optically Transparent Tetracationic Porphyrin/TiO2 Composite Thin Films. ACS Applied Materials & Interfaces, 2010, 2, 712-721.	8.0	47
86	Growth of silver on ZnO and SnO2 thin films intended for low emissivity applications. Applied Surface Science, 2013, 268, 507-515.	6.1	47
87	An XPS study of the mixing effects induced by ion bombardment in composite oxides. Applied Surface Science, 1993, 68, 453-459.	6.1	46
88	Oxidation State and Size Effects in CoO Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 6676-6679.	2.6	46
89	Biocompatible surfaces by immobilization of heparin on diamond-like carbon films deposited on various substrates. Surface and Interface Analysis, 2000, 29, 386-391.	1.8	46
90	Mechanism of Copper Passivation in Aqueous Sodium Carbonateâ^'Bicarbonate Solution Derived from Combined X-ray Photoelectron Spectroscopic and Electrochemical Data. Journal of Physical Chemistry B, 1998, 102, 5483-5489.	2.6	45

#	Article	IF	CITATIONS
91	Theoretical and experimental characterization of TiO ₂ thin films deposited at oblique angles. Journal Physics D: Applied Physics, 2011, 44, 385302.	2.8	45
92	Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sensors and Actuators B: Chemical, 2016, 226, 436-443.	7.8	45
93	Application of Prussian Blue electrodes for amperometric detection of free chlorine in water samples using Flow Injection Analysis. Talanta, 2016, 146, 410-416.	5.5	45
94	Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1279.	1.0	44
95	Titania-supported bimetallic catalyst synthesis by photocatalytic codeposition at ambient temperature: Preparation and characterization of Pt\$z.sbnd;Rh, Ag\$z.sbnd;Rh, and Pt\$z.sbnd;Pd couples. Journal of Catalysis, 1991, 132, 490-497.	6.2	44
96	X-ray Photoelectron Spectroscopy and Infrared Study of the Nature of Cu Species in Cu/ZrO2de-NOx Catalysts. Journal of Physical Chemistry B, 2002, 106, 10185-10190.	2.6	44
97	A novel and improved surfactant-modified Prussian Blue electrode for amperometric detection of free chlorine in water. Sensors and Actuators B: Chemical, 2015, 213, 116-123.	7.8	44
98	Passivation of nanocrystalline Al prepared by the gas phase condensation method: An x-ray photoelectron spectroscopy study. Journal of Materials Research, 1998, 13, 703-710.	2.6	43
99	Low temperature synthesis of dense SiO2 thin films by ion beam induced chemical vapor deposition. Thin Solid Films, 2001, 396, 9-15.	1.8	43
100	Influence of irrigation conditions in the germination of plasma treated Nasturtium seeds. Scientific Reports, 2018, 8, 16442.	3.3	43
101	Size and support effects in the photoelectron spectra of small TiO2 particles. Surface and Interface Analysis, 1992, 18, 392-396.	1.8	42
102	XPS and ISS study of NiTiO3and PbTiO3subjected to low-energy ion bombardment. I. Influence of the type of ion (Ar+and O 2+). Surface and Interface Analysis, 1993, 20, 941-948.	1.8	42
103	SnO2 thin films prepared by ion beam induced CVD: preparation and characterization by X-ray absorption spectroscopy. Thin Solid Films, 1999, 353, 113-123.	1.8	42
104	An in situ XAS study of Cu/ZrO catalysts under de-NO reaction conditions. Journal of Catalysis, 2005, 235, 295-301.	6.2	42
105	Influence of the Angular Distribution Function of Incident Particles on the Microstructure and Anomalous Scaling Behavior of Thin Films. Physical Review Letters, 2006, 96, 236101.	7.8	42
106	Porosity and microstructure of plasma deposited TiO2 thin films. Microporous and Mesoporous Materials, 2009, 118, 314-324.	4.4	42
107	Nanocolumnar growth of thin films deposited at oblique angles: Beyond the tangent rule. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	42
108	Ion beam induced chemical vapor deposition for the preparation of thin film oxides. Thin Solid Films, 1994, 241, 198-201.	1.8	41

#	Article	IF	CITATIONS
109	Valence and Localization of Praseodymium in Pr-Doped Zircon. Journal of Solid State Chemistry, 1998, 139, 412-415.	2.9	41
110	Non-conventional synthesis of Cr-doped SnO2 pigments. Ceramics International, 2003, 29, 385-392.	4.8	41
111	Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range. Journal of Materials Chemistry, 2012, 22, 1341-1346.	6.7	41
112	Structure determination for coadsorbed molecular fragments using chemical shift photoelectron diffraction. Physical Review Letters, 1993, 71, 581-584.	7.8	40
113	Formation of Subsurface W ⁵⁺ Species in Gasochromic Pt/WO ₃ Thin Films Exposed to Hydrogen. Journal of Physical Chemistry C, 2017, 121, 15719-15727.	3.1	40
114	Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films. Sensors, 2017, 17, 24.	3.8	40
115	CuxCo3-xO4 ultra-thin film as efficient anodic catalysts for anion exchange membrane water electrolysers. Journal of Power Sources, 2019, 415, 136-144.	7.8	40
116	Interface effects for metal oxide thin films deposited on another metal oxide III. SnO and SnO2 deposited on MgO (100) and the use of chemical state plots. Surface Science, 1996, 366, 556-563.	1.9	39
117	Characterization and application of a new pH sensor based on magnetron sputtered porous WO3 thin films deposited at oblique angles. Electrochimica Acta, 2016, 193, 24-31.	5.2	39
118	Structural characterization of partially amorphous SnO2 nanoparticles by factor analysis of XAS and FT-IR spectra. Solid State Ionics, 1999, 116, 117-127.	2.7	38
119	On the Deposition Rates of Magnetron Sputtered Thin Films at Oblique Angles. Plasma Processes and Polymers, 2014, 11, 571-576.	3.0	38
120	Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition. Sensors and Actuators B: Chemical, 2017, 240, 37-45.	7.8	38
121	Hydrogen-induced titanium oxide migration onto metallic rhodium in real rhodium/titania catalysts. The Journal of Physical Chemistry, 1987, 91, 6625-6628.	2.9	37
122	XPS characterization of coal surfaces: Study of aerial oxidation of brown coals. Surface and Interface Analysis, 1988, 12, 565-571.	1.8	37
123	The effects of the NaF flux on the oxidation state and localisation of praseodymium in Pr-doped zircon pigments. Journal of the European Ceramic Society, 1999, 19, 641-648.	5.7	37
124	Determination of the hydrogen content in diamond-like carbon and polymeric thin films by reflection electron energy loss spectroscopy. Diamond and Related Materials, 2007, 16, 107-111.	3.9	37
125	Preillumination of TiO2 and Ta2O5 Photoactive Thin Films As a Tool to Tailor the Synthesis of Composite Materials. Langmuir, 2008, 24, 9460-9469.	3.5	37
126	Optically Active Luminescent Perylene Thin Films Deposited by Plasma Polymerization. Journal of Physical Chemistry C, 2009, 113, 431-438.	3.1	37

AgustÃn R. GonzÃilez-Elipe

#	Article	IF	CITATIONS
127	Wetting Properties of Polycrystalline TiO ₂ Surfaces: A Scaling Approach to the Roughness Factors. Langmuir, 2010, 26, 15875-15882.	3.5	37
128	Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes. Advanced Materials, 2011, 23, 848-853.	21.0	37
129	Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains. Applied Materials Today, 2020, 21, 100815.	4.3	37
130	Unraveling Discharge and Surface Mechanisms in Plasma-Assisted Ammonia Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14855-14866.	6.7	37
131	XPS intensities and binding energy shifts as metal dispersion parameters in Ni/SiO2 catalysts. Surface and Interface Analysis, 1990, 16, 375-379.	1.8	36
132	Hybrid catalytic-DBD plasma reactor for the production of hydrogen and preferential CO oxidation (CO-PROX) at reduced temperatures. Chemical Communications, 2009, , 6192.	4.1	36
133	Selective Detection of Volatile Organic Compounds by Spectral Imaging of Porphyrin Derivatives Bound to TiO ₂ Porous Films. ACS Applied Materials & Interfaces, 2012, 4, 5147-5154.	8.0	36
134	Vertically Aligned Hybrid Core/Shell Semiconductor Nanowires for Photonics Applications. Advanced Functional Materials, 2013, 23, 5981-5989.	14.9	36
135	Oxygen interaction with CoSi(100) and CoSi2(100) surfaces. Surface Science, 1982, 117, 621-628.	1.9	35
136	Optical and crystallisation behaviour of TiO2 and V/TiO2 thin films prepared by plasma and ion beam assisted methods. Thin Solid Films, 2003, 429, 84-90.	1.8	35
137	Chemical state and distribution of Mn ions in Mn-doped α-Al 2 O 3 solid solutions prepared in the absence and the presence of fluxes. Journal of the European Ceramic Society, 2004, 24, 3057-3062.	5.7	35
138	Design and control of porosity in oxide thin films grown by PECVD. Journal of Materials Science, 2006, 41, 5220-5226.	3.7	35
139	Physicochemical surface analysis and germination at different irrigation conditions of DBD plasmaâ€ŧreated wheat seeds. Plasma Processes and Polymers, 2021, 18, .	3.0	35
140	Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. I. Preparation and characterization of TiO2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 2728-2732.	2.1	34
141	Synthesis of SnO and SnO2 nanocrystalline powders by the gas phase condensation method. Sensors and Actuators B: Chemical, 1996, 31, 29-32.	7.8	34
142	Ar stabilisation of the cubic/tetragonal phases of ZrO2 in thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films, 2001, 389, 34-42.	1.8	34
143	Relationship between scaling behavior and porosity of plasma-deposited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub>films. Physical Review B. 2007. 76</mml:mrow></mml:math 	nrðŵ> <td>mi:math>th</td>	mi:math>th
144	Band Gap Narrowing versus Formation of Electronic States in the Gap in Nâ^'TiO ₂ Thin Films. Journal of Physical Chemistry C, 2010, 114, 22546-22557.	3.1	34

#	Article	IF	CITATIONS
145	Surface Functionalization, Oxygen Depth Profiles, and Wetting Behavior of PET Treated with Different Nitrogen Plasmas. ACS Applied Materials & Interfaces, 2010, 2, 980-990.	8.0	34
146	Liquids Analysis with Optofluidic Bragg Microcavities. ACS Applied Materials & Interfaces, 2013, 5, 6743-6750.	8.0	34
147	New Copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochimica Acta, 2015, 169, 195-201.	5.2	34
148	1-dimensional TiO2 nano-forests as photoanodes for efficient and stable perovskite solar cells fabrication. Nano Energy, 2017, 35, 215-222.	16.0	34
149	Adsorption and oxidation of K deposited on graphite. Surface Science, 1996, 364, 253-265.	1.9	33
150	Surface Defects and Homogeneous Distribution of Silver Particles on HOPG. Langmuir, 1998, 14, 7324-7326.	3.5	33
151	Transparent Nanometric Organic Luminescent Films as UVâ€Active Components in Photonic Structures. Advanced Materials, 2011, 23, 761-765.	21.0	33
152	Tuning Dichroic Plasmon Resonance Modes of Gold Nanoparticles in Optical Thin Films. Advanced Functional Materials, 2013, 23, 1655-1663.	14.9	33
153	Optical properties and electronic transitions of SnO2 thin films by reflection electron energy loss spectroscopy. Surface Science, 1998, 400, 116-126.	1.9	32
154	Crystal-Field Effects at the TiO2â^'SiO2Interface As Observed by X-ray Absorption Spectroscopy. Langmuir, 2000, 16, 7066-7069.	3.5	32
155	Spectroscopic Studies on the Localization of Vanadium(IV) in Vanadiumâ€Doped Zircon Pigments. Journal of the American Ceramic Society, 1998, 81, 395-400.	3.8	32
156	Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers. Journal of Applied Physics, 2005, 98, 114316.	2.5	32
157	Morphological evolution of pulsed laser deposited ZrO2 thin films. Journal of Applied Physics, 2010, 107, .	2.5	32
158	Roughness assessment and wetting behavior of fluorocarbon surfaces. Journal of Colloid and Interface Science, 2012, 376, 274-282.	9.4	32
159	Plasma reforming of methane in a tunable ferroelectric packed-bed dielectric barrier discharge reactor. Journal of Power Sources, 2015, 296, 268-275.	7.8	32
160	Electrochromic response and porous structure of WO3 cathode layers. Electrochimica Acta, 2021, 376, 138049.	5.2	32
161	The state of nickel in Ni/SiO2 and Ni/TiO2-calcined catalysts. Journal of Catalysis, 1992, 136, 415-422.	6.2	31
162	Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials. Sensors and Actuators B: Chemical, 1999, 61, 23-32.	7.8	31

#	Article	IF	CITATIONS
163	The Flexible Surface Revisited: Adsorbate-Induced Reconstruction, Homocoupling, and Sonogashira Cross-Coupling on the Au(100) Surface. Journal of Physical Chemistry C, 2014, 118, 11677-11684.	3.1	31
164	Porous, robust highly conducting Ni-YSZ thin film anodes prepared by magnetron sputtering at oblique angles for application as anodes and buffer layers in solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 7382-7387.	7.1	31
165	Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 systems. Sensors and Actuators, 1989, 18, 337-348.	1.7	30
166	Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions. Journal of Materials Research, 2002, 17, 797-804.	2.6	30
167	Incorporation and Thermal Evolution of Rhodamine 6G Dye Molecules Adsorbed in Porous Columnar Optical SiO2 Thin Films. Langmuir, 2009, 25, 9140-9148.	3.5	30
168	Tunable Nanostructure and Photoluminescence of Columnar ZnO Films Grown by Plasma Deposition. Journal of Physical Chemistry C, 2010, 114, 20932-20940.	3.1	30
169	On the microstructure of thin films grown by an isotropically directed deposition flux. Journal of Applied Physics, 2010, 108, 064316.	2.5	30
170	Antibacterial Nanostructured Ti Coatings by Magnetron Sputtering: From Laboratory Scales to Industrial Reactors. Nanomaterials, 2019, 9, 1217.	4.1	30
171	Synchrotron Photoemission Characterization of TiO2Supported on SiO2. Langmuir, 1998, 14, 4908-4914.	3.5	29
172	Plasma Chemistry of NO in Complex Gas Mixtures Excited with a Surfatron Launcher. Journal of Physical Chemistry A, 2005, 109, 4930-4938.	2.5	29
173	Wetting Angles on Illuminated Ta2O5 Thin Films with Controlled Nanostructure. Journal of Physical Chemistry C, 2009, 113, 3775-3784.	3.1	29
174	Surface nanostructuring of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn> films by high energy ion irradiation. Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 ⊲/n₂ ml:m	ın 29/mml:ms
175	Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures. Journal of Applied Physics, 2012, 111, 054312.	2.5	29
176	Improving the pollutant removal efficiency of packed-bed plasma reactors incorporating ferroelectric components. Chemical Engineering Journal, 2017, 314, 311-319.	12.7	29
177	Hydrophobicity, Freezing Delay, and Morphology of Laser-Treated Aluminum Surfaces. Langmuir, 2019, 35, 6483-6491.	3.5	29
178	Structural aspects of the interaction of methyl thiol and dimethyldisulphide with Ni(111). Journal of Physics Condensed Matter, 1995, 7, 7781-7796.	1.8	28
179	Chemical Analysis of Ternary Ti Oxides using Soft X-ray Absorption Spectroscopy. Surface and Interface Analysis, 1997, 25, 804-808.	1.8	28
180	Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157, 315-324.	4.7	28

#	Article	IF	CITATIONS
181	Supported Ag–TiO2core–shell nanofibres formed at low temperature by plasma deposition. Nanotechnology, 2006, 17, 3518-3522.	2.6	28
182	Free-Base Carboxyphenyl Porphyrin Films Using a TiO2 Columnar Matrix: Characterization and Application as NO2 Sensors. Sensors, 2015, 15, 11118-11132.	3.8	28
183	Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia – nickel anodes for application in solid electrolyte fuel cells. Journal of Power Sources, 2016, 324, 679-686.	7.8	28
184	Use of hydrogen atoms for the low-temperature reduction of oxides. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 1043.	1.0	27
185	Ion-Beam-Induced CVD: An Alternative Method of Thin Film Preparation. Chemical Vapor Deposition, 1997, 3, 219-226.	1.3	27
186	Corrosion resistant ZrO2 thin films prepared at room temperature by ion beam induced chemical vapour deposition. Surface and Coatings Technology, 2002, 151-152, 449-453.	4.8	27
187	Monitoring Interface Interactions by XPS at Nanometric Tin Oxides Supported on Al2O3 and Sb2Ox. Journal of Physical Chemistry B, 2004, 108, 9905-9913.	2.6	27
188	Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities. ACS Nano, 2016, 10, 1256-1264.	14.6	27
189	Ion beam effects in SiOx (x<2) subjected to low energy Ar+, He+ and N2+ bombardment. Nuclear Instruments & Methods in Physics Research B, 2002, 187, 465-474.	1.4	26
190	Deposition of Thin Films of SiOxCyH in a Surfatron Microwave Plasma Reactor with Hexamethyldisiloxane as Precursor. Chemical Vapor Deposition, 2005, 11, 317-323.	1.3	26
191	Water plasmas for the revalorisation of heavy oils and cokes from petroleum refining. Environmental Science & Technology, 2009, 43, 2557-2562.	10.0	26
192	Structure of Glancing Incidence Deposited TiO2 Thin Films as Revealed by Grazing Incidence Small-Angle X-ray Scattering. ChemPhysChem, 2010, 11, 2205-2208.	2.1	26
193	Thermal and photochemical methods for the preparation of thin films of cermet materials. Journal of Materials Science, 1996, 31, 2325-2332.	3.7	25
194	Scaling behavior and mechanism of formation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mi mathvariant="normal"> Si <mml:msub> <mml:mi mathvariant="normal"> O <mml:mn> 2 </mml:mn> </mml:mi </mml:msub> </mml:mi </mml:mrow> thin</mml:math 	3.2	25
195	films grown by plasma-enhanced chemical vapor deposition. Physical Review B, 2007, 76, . Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2Systems by Flowing Microwave Discharges. Journal of Physical Chemistry A, 2007, 111, 1057-1065.	2.5	25
196	Factors that Contribute to the Growth of Ag@TiO ₂ Nanofibers by Plasma Deposition. Plasma Processes and Polymers, 2007, 4, 515-527.	3.0	25
197	Plasmas and atom beam activation of the surface of polymers. Journal Physics D: Applied Physics, 2008, 41, 225209.	2.8	25
198	Anchoring effect on (tetra)carboxyphenyl porphyrin/TiO ₂ composite films for VOC optical detection. RSC Advances, 2014, 4, 1974-1981.	3.6	25

#	Article	IF	CITATIONS
199	Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO_2 layers to improve DSC efficiency. Optics Express, 2015, 23, A1642.	3.4	25
200	Growth of nanocolumnar porous TiO 2 thin films by magnetron sputtering using particle collimators. Surface and Coatings Technology, 2018, 343, 172-177.	4.8	25
201	Mixed (Oxygen Ion and nâ€Type) Conductivity and Structural Characterization of Titaniaâ€Doped Stabilized Tetragonal Zirconia. Journal of the Electrochemical Society, 1999, 146, 2425-2434.	2.9	24
202	Angle dependence of the O K edge absorption spectra of TiO2 thin films with preferential texture. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 248-254.	1.4	24
203	X-ray photoelectron spectroscopy study of the first stages of ZnO growth and nanostructure dependence of the effects of polarization at ZnO/SiO2 and ZnO/Al2O3 interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1393-1398.	2.1	24
204	Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites. Catalysis Communications, 2009, 10, 1898-1902.	3.3	24
205	Tuning the transmittance and the electrochromic behavior of CoxSiyOz thin films prepared by magnetron sputtering at glancing angle. Solar Energy Materials and Solar Cells, 2014, 123, 130-138.	6.2	24
206	Nanocolumnar 1-dimensional TiO ₂ photoanodes deposited by PVD-OAD for perovskite solar cell fabrication. Journal of Materials Chemistry A, 2015, 3, 13291-13298.	10.3	24
207	High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells. Journal of Power Sources, 2017, 363, 251-259.	7.8	24
208	Active sites and optimization of mixed copper-cobalt oxide anodes for anion exchange membrane water electrolysis. Journal of Power Sources, 2021, 485, 229217.	7.8	24
209	Anisotropic Resistivity Surfaces Produced in ITO Films by Laserâ€Induced Nanoscale Selfâ€organization. Advanced Optical Materials, 2021, 9, 2001086.	7.3	24
210	The growth of thin Ti and TiOx films on Pt(111): Morphology and oxidation states. Surface Science, 1992, 273, 31-39.	1.9	23
211	Preparation by hydrolysis of aerosols and colour properties of Cr-doped and Co-doped zircon powders. Journal of the European Ceramic Society, 1998, 18, 821-830.	5.7	23
212	Resonant photoemission characterization of SnO. Physical Review B, 1999, 60, 11171-11179.	3.2	23
213	Growth Mechanism and Chemical Structure of Amorphous Hydrogenated Silicon Carbide (a‧iC:H) Films Formed by Remote Hydrogen Microwave Plasma CVD From a Triethylsilane Precursor: Part 1. Chemical Vapor Deposition, 2009, 15, 39-46.	1.3	23
214	Non-destructive depth compositional profiles by XPS peak-shape analysis. Analytical and Bioanalytical Chemistry, 2010, 396, 2757-2768.	3.7	23
215	Enhanced Photoactivity in Bilayer Films with Buried Rutile–Anatase Heterojunctions. ChemPhysChem, 2011, 12, 191-196.	2.1	23
216	Importance of Poly(lactic-co-glycolic acid) in Scaffolds for Guided Bone Regeneration: A Focused Review. Journal of Oral Implantology, 2015, 41, e152-e157.	1.0	23

#	Article	IF	CITATIONS
217	Nanocolumnar association and domain formation in porous thin films grown by evaporation at oblique angles. Nanotechnology, 2016, 27, 395702.	2.6	23
218	In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes. Langmuir, 2017, 33, 6449-6456.	3.5	23
219	Microstructural engineering and use of efficient poison resistant Au-doped Ni-GDC ultrathin anodes in methane-fed solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 885-893.	7.1	23
220	Electron exchange in TiO2-supported silver catalysts I. Effect of the reducing pretreatments. Journal of Catalysis, 1982, 76, 254-264.	6.2	22
221	A resonant photoemission study of the ZrO2 valence band. Surface Science, 1994, 307-309, 848-853.	1.9	22
222	Contribution of the xâ€ray absorption spectroscopy to study TiO2thin films prepared by ion beam induced chemical vapor deposition. Journal of Applied Physics, 1995, 77, 591-597.	2.5	22
223	Substrate Effects and Chemical State Plots for the XPS Analysis of Supported TiO2 Catalysts. Surface and Interface Analysis, 1997, 25, 292-294.	1.8	22
224	Structure and chemistry of SiOx (x<2) systems. Vacuum, 2002, 67, 491-499.	3.5	22
225	A structural study of organo-silicon polymeric thin films deposited by remote microwave plasma enhanced chemical vapour deposition. Surface and Coatings Technology, 2004, 180-181, 244-249.	4.8	22
226	Excitation transfer mechanism along the visible to the Near-IR in rhodamine J-heteroaggregates. Chemical Communications, 2010, 46, 4372.	4.1	22
227	Plasma Deposition of Perylene–Adamantane Nanocomposite Thin Films for NO ₂ Room-Temperature Optical Sensing. Journal of Physical Chemistry C, 2012, 116, 8731-8740.	3.1	22
228	Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 241, 58-66.	3.9	22
229	Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dye‣ensitized Solar Cells. ChemPhysChem, 2014, 15, 1088-1097.	2.1	22
230	Plasma assisted CO2 dissociation in pure and gas mixture streams with a ferroelectric packed-bed reactor in ambient conditions. Chemical Engineering Journal, 2022, 430, 133066.	12.7	22
231	Ionomer-Free Nickel-Iron bimetallic electrodes for efficient anion exchange membrane water electrolysis. Chemical Engineering Journal, 2022, 433, 133774.	12.7	22
232	Structural changes at the titania surface and their relationship to metal-support interactions in rhodium-titania catalysts. The Journal of Physical Chemistry, 1988, 92, 4685-4690.	2.9	21
233	Depth profiling of catalyst samples: An XPS-based model for the sputtering behavior of powder materials. Journal of Catalysis, 1991, 130, 627-641.	6.2	21
234	Charging and mixing effects during the XPS analysis of mixtures of oxides. Surface and Interface Analysis, 1994, 22, 111-114.	1.8	21

AgustÃn R. GonzÃilez-Elipe

#	Article	IF	CITATIONS
235	Electronic structure of insulatingZr3N4studied by resonant photoemission. Physical Review B, 1995, 51, 17984-17987.	3.2	21
236	Oxidation of molybdenum surfaces by reactive oxygen plasma and O2+ bombardment: an auger and XPS study. Surface and Interface Analysis, 1998, 26, 235-241.	1.8	21
237	Electron temperature measurement in a surface-wave-produced argon plasma at intermediate pressures. European Physical Journal D, 2001, 14, 361-366.	1.3	21
238	Phase mixing in Fe/TiO2 thin films prepared by ion beam-induced chemical vapour deposition: optical and structural properties. Surface and Coatings Technology, 2002, 158-159, 552-557.	4.8	21
239	Plasma Characterization of Oxygen-TetramethylsilaneÂMixtures for the Plasma-Enhanced CVD of SiOxCyHz Thin Films. Chemical Vapor Deposition, 2006, 12, 728-735.	1.3	21
240	Surface nanostructuring of TiO2 thin films by ion beam irradiation. Scripta Materialia, 2009, 60, 574-577.	5.2	21
241	Air- and Light-Stable Superhydrophobic Colored Surfaces Based on Supported Organic Nanowires. Langmuir, 2010, 26, 1487-1492.	3.5	21
242	"In Operando―X-ray Absorption Spectroscopy Analysis of Structural Changes During Electrochemical Cycling of WO3 and WxSiyOz Amorphous Electrochromic Thin Film Cathodes. Journal of Physical Chemistry C, 2015, 119, 644-652.	3.1	21
243	Electrochromism in WO _{<i>x</i>} and W _{<i>x</i>} Si _{<i>y</i>} O _{<i&g Thin Films Prepared by Magnetron Sputtering at Glancing Angles. Nanoscience and Nanotechnology Letters, 2013, 5, 89-93.</i&g }	gt;z <td>gt;</td>	gt;
244	Role of hydrogen in the mobility of phases in Ni\$z.sbnd;TiOx systems. Journal of Catalysis, 1991, 131, 51-59.	6.2	20
245	Photoelectron spectroscopy of metal oxide particles: size and support effects. Vacuum, 1994, 45, 1085-1086.	3.5	20
246	121Sb Mössbauer and X-ray Photoelectron Spectroscopy Studies of the Electronic Structure of Some Antimony Misfit Layer Compounds. Chemistry of Materials, 1997, 9, 1393-1398.	6.7	20
247	Anomalous behaviour in resonant Auger emission of SiOx thin films. Surface Science, 1999, 436, 202-212.	1.9	20
248	Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE–IBAD. Surface and Coatings Technology, 2007, 202, 1256-1261.	4.8	20
249	"in situ―XPS studies of laser induced surface cleaning and nitridation of Ti. Surface and Coatings Technology, 2008, 202, 1486-1492.	4.8	20
250	Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures. Nanoscale, 2011, 3, 4554.	5.6	20
251	Lateral and in-depth distribution of functional groups on diamond-like carbon after oxygen plasma treatments. Diamond and Related Materials, 2011, 20, 49-56.	3.9	20
252	Low refractive index SiOF thin films prepared by reactive magnetron sputtering. Thin Solid Films, 2013, 542, 332-337.	1.8	20

#	Article	IF	CITATIONS
253	Nanoindentation of nanocolumnar TiO2 thin films with single and stacked zig-zag layers. Thin Solid Films, 2014, 550, 444-449.	1.8	20
254	EPR study of oxygen adsorption on X-ray irradiated anatase. Chemical Physics Letters, 1978, 57, 265-268.	2.6	19
255	Local site identification for NO on Ni(111) in vibrationally distinct adsorption states. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2445-2450.	2.1	19
256	Iron oxide thin films prepared by ion beam induced chemical vapor deposition: Structural characterization by infrared spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2244.	2.1	19
257	Electron temperature measurement in a slot antenna 2.45 GHz microwave plasma source. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 410.	1.6	19
258	The Auger parameter and the study of chemical and electronic interactions at the Sb2Ox/SnO2 and Sb2Ox/Al2O3 interfaces. Surface Science, 2003, 537, 228-240.	1.9	19
259	X-ray photoelectron spectroscopy study of the nucleation processes and chemistry of CdS thin films deposited by sublimation on different solar cell substrate materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 919-928.	2.1	19
260	Critical thickness and nanoporosity of TiO2 optical thin films. Microporous and Mesoporous Materials, 2012, 160, 1-9.	4.4	19
261	Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO ₂ . Journal of Biomedical Materials Research - Part A, 2013, 101A, 1026-1035.	4.0	19
262	Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Applied Surface Science, 2015, 358, 660-669.	6.1	19
263	Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4962-4970.	10.3	19
264	Electron paramagnetic resonance study of the reactivity toward carbon monoxide and oxygen of O– ions adsorbed on silica-supported molybdenum catalysts. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 1297.	1.0	18
265	Microscopic and macroscopic dielectric description of mixed oxide thin films. Journal of Applied Physics, 2007, 102, 084112.	2.5	18
266	Optically Active Thin Films Deposited by Plasma Polymerization of Dye Molecules. Chemical Vapor Deposition, 2007, 13, 319-325.	1.3	18
267	Tunable In-Plane Optical Anisotropy of Ag Nanoparticles Deposited by DC Sputtering onto SiO2 Nanocolumnar Films. Plasmonics, 2010, 5, 241-250.	3.4	18
268	Nitrogen plasma functionalization of low density polyethylene. Surface and Coatings Technology, 2011, 205, 3356-3364.	4.8	18
269	XPS study of lutetium oxide samples with different hydration/carbonation degrees as a function of the preparation method. Applied Surface Science, 1987, 29, 40-48.	6.1	17
270	Structural characterization of PbTiO3 thin films prepared by ion beam induced CVD and evaporation of lead. Thin Solid Films, 1996, 272, 99-106.	1.8	17

#	Article	IF	CITATIONS
271	Preparation of Al2O3 thin films by ion-beam-induced CVD: structural effects of the bombardment with accelerated ions. Surface and Coatings Technology, 1996, 80, 23-26.	4.8	17
272	Optical properties and electron spectroscopy characterization of AlxTiyOz thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3477-3482.	2.1	17
273	XPS, SEM and TEM characterization of stainless-steel 316L surfaces after electrochemical etching and oxidizing. Surface and Interface Analysis, 1999, 28, 106-110.	1.8	17
274	SPECTROSCOPIC CHARACTERIZATION OF OXIDE/OXIDE INTERFACES. , 2001, , 147-194.		17
275	Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1275-1284.	2.1	17
276	Collisional radiative model of an argon atmospheric capillary surface-wave discharge. Physics of Plasmas, 2004, 11, 5497-5506.	1.9	17
277	Optical refractive index and static permittivity of mixed Zr–Si oxide thin films prepared by ion beam induced CVD. Thin Solid Films, 2007, 516, 481-485.	1.8	17
278	Formation of Nitrogen Functional Groups on Plasma Treated DLC. Plasma Processes and Polymers, 2009, 6, 555-565.	3.0	17
279	Rhodamine 6G and 800 J-heteroaggregates with enhanced acceptor luminescence (HEAL) adsorbed in transparent SiO2 GLAD thin films. Physical Chemistry Chemical Physics, 2011, 13, 7071.	2.8	17
280	Vertical and tilted Ag-NPs@ZnO nanorods by plasma-enhanced chemical vapour deposition. Nanotechnology, 2012, 23, 255303.	2.6	17
281	Sodium ion storage performance of magnetron sputtered WO3 thin films. Electrochimica Acta, 2019, 321, 134669.	5.2	17
282	Photo-decomposition of Ozone on TiO ₂ . Zeitschrift Fur Physikalische Chemie, 1981, 126, 251-257.	2.8	16
283	The role of oxygen vacancies during the decomposition of RhCl3/TiO2 precursor: study by XPS, IR, EPR and NMR Catalysis Today, 1988, 2, 663-673.	4.4	16
284	XPS and TRP/TPO Study of the behaviour of rhodium particles supported on TiO2. Surface and Interface Analysis, 1988, 12, 247-252.	1.8	16
285	Electronic interaction of Ni particles with TiO2 and SiO2. Surface Science, 1991, 251-252, 1012-1017.	1.9	16
286	"In situ―XPS study of the photoassisted reduction of noble-metal cations on TiO2. Applied Surface Science, 1993, 69, 285-289.	6.1	16
287	Use of XAS and chemical probes to study the structural damage induced in oxide ceramics by bombardment with low-energy ions. Surface and Interface Analysis, 1994, 21, 418-424.	1.8	16
288	Interface effects and the Auger parameter in titanium oxide thin films deposited on metals and in sandwich structures. Journal of Electron Spectroscopy and Related Phenomena, 1997, 87, 61-71.	1.7	16

#	Article	IF	CITATIONS
289	Different oxidation states of polycrystalline molybdenum treated by O2-plasma or O2-ion bombardment. Surface Science, 1998, 402-404, 174-177.	1.9	16
290	Electronic interactions at SiO2/M′O (M′: Al, Ti) oxide interfaces. Surface Science, 2001, 482-485, 680-686.	1.9	16
291	First nucleation steps of vanadium oxide thin films studied by XPS inelastic peak shape analysis. Applied Surface Science, 2005, 252, 189-195.	6.1	16
292	Global model of a low pressure ECR microwave plasma applied to the PECVD of SiO2thin films. Journal Physics D: Applied Physics, 2007, 40, 3411-3422.	2.8	16
293	Using ion beams to tune the nanostructure and optical response of co-deposited Ag : BN thin films. Journal Physics D: Applied Physics, 2007, 40, 4614-4620.	2.8	16
294	Plasma catalysis over lanthanum substituted perovskites. Catalysis Communications, 2007, 8, 1739-1742.	3.3	16
295	Luminescent and Optical Properties of Nanocomposite Thin Films Deposited by Remote Plasma Polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6, 17-26.	3.0	16
296	Colored and Transparent Oxide Thin Films Prepared by Magnetron Sputtering: The Glass Blower Approach. ACS Applied Materials & Interfaces, 2013, 5, 1967-1976.	8.0	16
297	Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry C, 2014, 2, 6561-6573.	5.5	16
298	Bending Induced Self-Organized Switchable Gratings on Polymeric Substrates. ACS Applied Materials & Interfaces, 2014, 6, 11924-11931.	8.0	16
299	Flexible Distributed Bragg Reflectors from Nanocolumnar Templates. Advanced Optical Materials, 2015, 3, 171-175.	7.3	16
300	Sensing and biosensing with screen printed electrodes modified with nanostructured nickel oxide thin films prepared by magnetron sputtering at oblique angles. Electrochemistry Communications, 2018, 94, 5-8.	4.7	16
301	Use of XPS and Ar+depth profiling to determine the dispersion degree of Ni in Ni/TiO2and Ni/SiO2catalysts. Surface and Interface Analysis, 1992, 19, 508-512.	1.8	15
302	Preparation of TiO2 and Al2O3 thin films by ion-beam induced chemical vapour deposition. Vacuum, 1994, 45, 1043-1045.	3.5	15
303	Synthesis and Characterization of Diamine Intercalation Compounds of SnS2 Single Crystals. Journal of Solid State Chemistry, 2000, 150, 391-398.	2.9	15
304	Amorphisation and related structural effects in thin films prepared by ion beam assisted methods. Surface and Coatings Technology, 2000, 125, 116-123.	4.8	15
305	Titanium local environment and electrical conductivity of TiO2-doped stabilized tetragonal zirconia. Journal of Materials Science, 2000, 35, 345-352.	3.7	15
306	Molecular dynamics simulation of the effect of pH on the adsorption of rhodamine laser dyes on TiO ₂ hydroxylated surfaces. Molecular Simulation, 2009, 35, 1140-1151.	2.0	15

#	Article	IF	CITATIONS
307	Growth of SiO ₂ and TiO ₂ thin films deposited by reactive magnetron sputtering and PECVD by the incorporation of nonâ€directional deposition fluxes. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 796-801.	1.8	15
308	Anisotropic In-Plane Conductivity and Dichroic Gold Plasmon Resonance in Plasma-Assisted ITO Thin Films e-Beam-Evaporated at Oblique Angles. ACS Applied Materials & Interfaces, 2015, 7, 10993-11001.	8.0	15
309	Dye-based photonic sensing systems. Sensors and Actuators B: Chemical, 2016, 228, 649-657.	7.8	15
310	Effect of sodium on the reductibility of V(V) ions during propene adsorption on V2O5/TiO2 catalysts. Journal of Catalysis, 1988, 114, 473-477.	6.2	14
311	TiO2corrosion during water photocleavage using Rh/TiO2suspensions. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3441-3445.	1.7	14
312	Generation of homogeneous rhodium particles by photoreduction of rhodium(III) on titania colloids grafted on silica. Langmuir, 1993, 9, 121-125.	3.5	14
313	XAS and XRD structural studies of titanium oxide thin films prepared by ion beam induced CVD. Thin Solid Films, 1994, 241, 175-178.	1.8	14
314	Thermal annealing of defects in highly defective NiO nanoparticles studied by X-ray and electron spectroscopies. Chemical Physics Letters, 1997, 266, 184-188.	2.6	14
315	AlN thin films prepared by ion beam induced chemical vapour deposition. Thin Solid Films, 1998, 317, 100-104.	1.8	14
316	Preparation and characterization of Al-Ti mixed oxide thin films. Surface and Coatings Technology, 1998, 100-101, 142-145.	4.8	14
317	Determination of growth mechanisms by X-ray photoemission and ion scattering spectroscopies: application to thin iron oxide films deposited on SiO2. Surface Science, 2000, 457, 24-36.	1.9	14
318	Spectroscopic characterisation and chemical reactivity of silicon monoxide layers deposited on Cu(100). Surface Science, 2000, 458, 229-238.	1.9	14
319	Room temperature synthesis of SiO2 thin films by ion beam induced and plasma enhanced CVD. Surface and Coatings Technology, 2001, 142-144, 856-860.	4.8	14
320	Correlation between optical properties and electronic parameters for mixed oxide thin films. Surface and Interface Analysis, 2006, 38, 752-756.	1.8	14
321	Ar + NO microwave plasmas for <i>Escherichia coli</i> sterilization. Journal Physics D: Applied Physics, 2008, 41, 092002.	2.8	14
322	Nitridation of nanocrystalline TiO2 thin films by treatment with ammonia. Thin Solid Films, 2011, 519, 3587-3595.	1.8	14
323	Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction. Materials, 2014, 7, 1687-1708.	2.9	14
324	Electrochemical activation of an oblique angle deposited Cu catalyst film for H ₂ production. Catalysis Science and Technology, 2015, 5, 2203-2214.	4.1	14

#	Article	IF	CITATIONS
325	Robust polarization active nanostructured 1D Bragg Microcavities as optofluidic label-free refractive index sensor. Sensors and Actuators B: Chemical, 2018, 256, 590-599.	7.8	14
326	Isotope Labelling for Reaction Mechanism Analysis in DBD Plasma Processes. Catalysts, 2019, 9, 45.	3.5	14
327	IR and XPS studies of the reactivity of CO with Ti-H species at the support on Rh/TiO2 catalysts. Spectrochimica Acta Part A: Molecular Spectroscopy, 1987, 43, 1599-1605.	0.1	13
328	XPS study of phase mobility in Ni/TiO2 systems. Surface Science, 1989, 211-212, 1113-1122.	1.9	13
329	Effect of chlorine impurities on the properties of CeO2. Surface Science, 1991, 251-252, 990-994.	1.9	13
330	Optical properties of zirconia–yttria single crystal compounds by reflection electron energy loss spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 2287-2291.	2.1	13
331	Surface chemical effects of low-energy N2+ ion bombardment on single crystalline ?-Al2O3. Surface and Interface Analysis, 2000, 30, 90-94.	1.8	13
332	Characterization of Sb2 O3 subjected to different ion and plasma surface treatments. Surface and Interface Analysis, 2003, 35, 256-262.	1.8	13
333	Colored semi-transparent Cu-Si oxide thin films prepared by magnetron sputtering. Optical Materials Express, 2011, 1, 1100.	3.0	13
334	Preparation and characterization of CrO2 films by Low Pressure Chemical Vapor Deposition from CrO3. Thin Solid Films, 2013, 539, 1-11.	1.8	13
335	Osteoconductive Potential of Barrier NanoSiO ₂ PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition. BioMed Research International, 2014, 2014, 1-10.	1.9	13
336	Kinetic energy-induced growth regimes of nanocolumnar Ti thin films deposited by evaporation and magnetron sputtering. Nanotechnology, 2019, 30, 475603.	2.6	13
337	SiOx by magnetron sputtered revisited: Tailoring the photonic properties of multilayers. Applied Surface Science, 2019, 488, 791-800.	6.1	13
338	3D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfaces. Langmuir, 2019, 35, 16876-16885.	3.5	13
339	An electron spin resonance study of charge-carrier stabilization in ZnO. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 3961.	1.0	12
340	The Role of the Oxygen Vacancies at the Support in the Co Oxidation On Rh/Ceo2 AND Rh/TiO2 AUTOCATALYSTS Studies in Surface Science and Catalysis, 1991, 71, 207-219.	1.5	12
341	Structure–electrical properties relationships in TiO2-doped stabilized tetragonal zirconia ceramics. Ceramics International, 1999, 25, 639-648.	4.8	12
342	Characterisation by X-ray absorption spectroscopy of oxide thin films prepared by ion beam-induced CVD. Thin Solid Films, 2000, 377-378, 460-466.	1.8	12

#	Article	IF	CITATIONS
343	The chemical state vector: a new concept for the characterization of oxide interfaces. Surface and Interface Analysis, 2001, 31, 761-767.	1.8	12
344	Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 988-994.	2.1	12
345	Enhancement of visible light-induced surface photo-activity of nanostructured N–TiO2 thin films modified by ion implantation. Chemical Physics Letters, 2013, 582, 95-99.	2.6	12
346	Physiological Degradation Mechanisms of PLGA Membrane Films under Oxygen Plasma Treatment. Journal of Physical Chemistry C, 2015, 119, 20446-20452.	3.1	12
347	In situ monitoring of the phenomenon of electrochemical promotion of catalysis. Journal of Catalysis, 2018, 358, 27-34.	6.2	12
348	Solid-State Dewetting of Gold on Stochastically Periodic SiO ₂ Nanocolumns Prepared by Oblique Angle Deposition. ACS Applied Materials & Interfaces, 2021, 13, 11385-11395.	8.0	12
349	Photo-Adsorption of Oxygen on Acid and Basic TiO2 Surfaces. Studies in Surface Science and Catalysis, 1985, , 113-126.	1.5	11
350	Electron spin resonance study of the radicals formed by ultraviolet irradiation of TiO2 in the presence of sulphur dioxide and oxygen. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 739.	1.0	11
351	Effect of Water in the Encapsulation of the Metallic Phase During Smsi Generation in Pt/TiO2 Catalysts. Studies in Surface Science and Catalysis, 1989, 48, 427-436.	1.5	11
352	Photoassisted deposition of rhodium on platinum/titania samples as a method of preparing bimetallic catalysts. Applied Catalysis, 1990, 57, 191-202.	0.8	11
353	Chemical changes in titanate surfaces induced by Ar+ion bombardment. Surface and Interface Analysis, 1992, 19, 286-290.	1.8	11
354	Experimental set-up for in-situ X-ray absorption spectroscopy analysis of photochemical reactions: the photocatalytic reduction of gold on titania. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78, 169-172.	3.9	11
355	Determination of thin film growth mechanisms of deposited metal oxides by a combined use of ISS and XPS. Applied Surface Science, 1999, 141, 186-192.	6.1	11
356	Structure and electrical behavior in air of TiO 2 -doped stabilized tetragonal zirconia ceramics. Applied Physics A: Materials Science and Processing, 1999, 68, 41-48.	2.3	11
357	Supported plasma-made 1D heterostructures: perspectives and applications. Journal Physics D: Applied Physics, 2011, 44, 174016.	2.8	11
358	Following the Wetting of One-Dimensional Photoactive Surfaces. Langmuir, 2012, 28, 15047-15055.	3.5	11
359	Effects of plasma surface treatments of diamond-like carbon and polymeric substrata on the cellular behavior of human fibroblasts. Journal of Biomaterials Applications, 2013, 27, 669-683.	2.4	11
360	Laser induced enhancement of dichroism in supported silver nanoparticles deposited by evaporation at glancing angles. Nanotechnology, 2013, 24, 045301.	2.6	11

#	Article	IF	CITATIONS
361	Portable IR dye laser optofluidic microresonator as a temperature and chemical sensor. Optics Express, 2016, 24, 14383.	3.4	11
362	Growth of nanocolumnar thin films on patterned substrates at oblique angles. Plasma Processes and Polymers, 2019, 16, 1800135.	3.0	11
363	Diffusion of nickel and surface reconstruction in Ni/TiO2 catalysts promoted by H2 and O2 treatments. Solid State Ionics, 1993, 63-65, 748-754.	2.7	10
364	Low-temperature photoassisted generation of a strong metal-support interaction in a rhodium/titania catalyst. The Journal of Physical Chemistry, 1993, 97, 3350-3354.	2.9	10
365	Barium and titanium aryl oxides as precursors for the preparation of thin-film oxides. The effect of bombardment by O2+. Journal of the Chemical Society Dalton Transactions, 1995, , 1529-1536.	1.1	10
366	Plate reactor for testing catalysts in the form of thin films. Applied Catalysis B: Environmental, 2001, 31, L5-L10.	20.2	10
367	Determination of surface nanostructure from analysis of electron plasmon losses in XPS. Surface and Interface Analysis, 2002, 34, 201-205.	1.8	10
368	Acicular Metallic Particles Obtained from Al-Doped Goethite Precursors. Chemistry of Materials, 2003, 15, 951-957.	6.7	10
369	Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas. Physical Review E, 2005, 72, 016401.	2.1	10
370	First nucleation steps during deposition of SiO2 thin films by plasma enhanced chemical vapour deposition. Surface Science, 2007, 601, 2223-2231.	1.9	10
371	Comments on "An Essay on Contact Angle Measurements†Determination of Surface Roughness and Modeling of the Wetting Behavior. Plasma Processes and Polymers, 2011, 8, 998-1002.	3.0	10
372	<i>c</i> -C ₄ F ₈ Plasmas for the Deposition of Fluorinated Carbon Films. Plasma Processes and Polymers, 2014, 11, 289-299.	3.0	10
373	"In situ―XPS studies of laser-induced surface nitridation and oxidation of tantalum. Journal of Materials Research, 2015, 30, 2967-2976.	2.6	10
374	Highâ€Rate Deposition of Stoichiometric Compounds by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers, 2016, 13, 960-964.	3.0	10
375	Ripening and recrystallization of NaCl nanocrystals in humid conditions. RSC Advances, 2016, 6, 3778-3782.	3.6	10
376	Energy-Sensitive Ion- and Cathode-Luminescent Radiation-Beam Monitors Based on Multilayer Thin-Film Designs. ACS Applied Materials & Interfaces, 2017, 9, 16313-16320.	8.0	10
377	EPR study of the radicals involved in the photooxidation of ethylene on TiO2. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1982, 79, 355-359.	0.2	10
378	EPR Study of SO ₂ Adsorption on ZnO. Zeitschrift Fur Physikalische Chemie, 1982, 132, 67-74.	2.8	9

#	Article	IF	CITATIONS
379	Calibration of the Probing Depth by Total Electron Yield of EXAFS Spectra in Oxide Overlayers (Ta2O5,) Tj ETQq1 1	0.784314 1.8	4 _g gBT /Ove
380	Preparation and characterization of diamine intercalation compounds of misfit layer sulfides. Journal of Materials Chemistry, 1998, 8, 2281-2286.	6.7	9
381	Structural modifications produced by the incorporation of Ar within the lattice of Fe2O3 thin films prepared by ion beam induced chemical vapour deposition. Acta Materialia, 2000, 48, 4555-4561.	7.9	9
382	Are measured values of the Auger parameter always independent of charging effects?. Surface and Interface Analysis, 2003, 35, 991-997.	1.8	9
383	Analysis of texture and microstructure of anatase thin films by Fourier transform infrared spectroscopy. Thin Solid Films, 2006, 515, 1585-1591.	1.8	9
384	Study of the first nucleation steps of thin films by XPS inelastic peak shape analysis. Surface and Interface Analysis, 2007, 39, 331-336.	1.8	9
385	Novel Guests for Porous Columnar Thin Films: The Switchable Perchlorinated Trityl Radical Derivatives. Langmuir, 2011, 27, 5098-5106.	3.5	9
386	Modulating Low Energy Ion Plasma Fluxes for the Growth of Nanoporous Thin Films. Plasma Processes and Polymers, 2015, 12, 719-724.	3.0	9
387	Cathode and ion-luminescence of Eu:ZnO thin films prepared by reactive magnetron sputtering and plasma decomposition of non-volatile precursors. Journal of Luminescence, 2016, 178, 139-146.	3.1	9
388	Nanoindentation and scratch resistance of multilayered TiO2-SiO2coatings with different nanocolumnar structures deposited by PV-OAD. Journal Physics D: Applied Physics, 2016, 49, 135104.	2.8	9
389	Laser Treatment of Nanoparticulated Metal Thin Films for Ceramic Tile Decoration. ACS Applied Materials & Interfaces, 2016, 8, 24880-24886.	8.0	9
390	Antibacterial response of titanium oxide coatings doped by nitrogen plasma immersion ion implantation. Surface and Coatings Technology, 2017, 314, 67-71.	4.8	9
391	Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical <i>vs.</i> electrical polarization effects. Materials Horizons, 2021, 8, 515-524.	12.2	9
392	Photo-Adsorption of Oxygen on Chlorinated TiO2 Surfaces; A Possible Way to Photo-Oxy-Chlorinations. Studies in Surface Science and Catalysis, 1981, 7, 1185-1197.	1.5	8
393	Study of the Mechanism of Water Splitting on UV-Irradiated Rh/TiO2. Studies in Surface Science and Catalysis, 1984, , 335-346.	1.5	8
394	XPS characterization of oxygenated species in TiO2 and Rh/TiO2 photocatalysts. Journal of Molecular Structure, 1986, 143, 227-230.	3.6	8
395	Interpretation of surface textural changes in SrTiO3 ex-oxalate samples using XPS and IR spectroscopies. Surface and Interface Analysis, 1990, 15, 693-697.	1.8	8
396	CO adsorption on rhodium(i) and on metallic rhodium supported on titanium dioxide. Journal of Molecular Catalysis, 1990, 62, 171-177.	1.2	8

#	Article	IF	CITATIONS
397	Surface modification of oxide materials subjected to low energy ion bombardment: a XAS study. Nuclear Instruments & Methods in Physics Research B, 1995, 97, 397-401.	1.4	8
398	Ultra-high vacuum deposition of Na on SnS2 in single crystal and powder forms: evidence of a decomposition reaction. Surface Science, 1999, 426, 259-267.	1.9	8
399	Plasma Deposition of Superhydrophobic Ag@TiO ₂ Core@shell Nanorods on Processable Substrates. Plasma Processes and Polymers, 2014, 11, 164-174.	3.0	8
400	Non-Enzymatic Glucose Sensors Based on Nickel Nanoporous Thin Films Prepared by Physical Vapor Deposition at Oblique Angles for Beverage Industry Applications. Journal of the Electrochemical Society, 2016, 163, B704-B709.	2.9	8
401	Critical Role of Oxygen in Silver-Catalyzed Glaser–Hay Coupling on Ag(100) under Vacuum and in Solution on Ag Particles. ACS Catalysis, 2017, 7, 3113-3120.	11.2	8
402	Ultrastable Co x Si y O z Nanowires by Glancing Angle Deposition with Magnetron Sputtering as Novel Electrocatalyst for Water Oxidation. ChemCatChem, 2019, 11, 6111-6115.	3.7	8
403	Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers. Microporous and Mesoporous Materials, 2020, 295, 109968.	4.4	8
404	EXAFS study of catalyst preparation procedure in Ni-silica and Ni-titania. Physica B: Condensed Matter, 1989, 158, 174-175.	2.7	7
405	Gas heating in low-pressure microwave argon discharges. Physical Review E, 2002, 66, 066401.	2.1	7
406	Structural effects due to the incorporation of Ar atoms in the lattice of ZrO2 thin films prepared by ion beam assisted deposition. Nuclear Instruments & Methods in Physics Research B, 2002, 194, 333-345.	1.4	7
407	Characterization of Co/ZrO2de-NOXThin Film Catalysts Prepared by Magnetron Sputtering. Catalysis Letters, 2003, 90, 195-203.	2.6	7
408	Molecular nitrogen implanted in Al2O3 by low energy N2+ ion bombardment. Solid State Communications, 2003, 128, 235-238.	1.9	7
409	Polymeric Sacrificial Layers for the Control of Microstructure and Porosity of Oxide Thin Films Deposited by Plasma-Enhanced Chemical Vapor Deposition. Chemistry of Materials, 2003, 15, 3041-3043.	6.7	7
410	A Novel PECVD Procedure for the Room-Temperature Synthesis of SiO2 Thin Films with Controlled Porosity. Chemical Vapor Deposition, 2004, 10, 17-20.	1.3	7
411	First stages of growth of cerium oxide deposited on alumina and reduced titania surfaces. Surface and Interface Analysis, 2006, 38, 510-513.	1.8	7
412	SiK-edge XANES study ofSiOxCyHzamorphous polymeric materials. Physical Review B, 2007, 75, .	3.2	7
413	Size and shape of supported zirconia nanoparticles determined by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2007, 101, 124910.	2.5	7
414	Study by grazing incident diffraction and surface spectroscopy of amalgams from ancient mirrors. Open Chemistry, 2009, 7, 47-53.	1.9	7

#	Article	IF	CITATIONS
415	Combined reactive magnetron sputtering and plasma decomposition of non-volatile precursors to grow luminescent thin films. Surface and Coatings Technology, 2013, 222, 144-150.	4.8	7
416	Stoichiometric Control of SiO _x Thin Films Grown by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers, 2016, 13, 1242-1248.	3.0	7
417	Metallization of ceramic substrates by laser induced decomposition of coordination complexes. Journal of the European Ceramic Society, 2016, 36, 2831-2836.	5.7	7
418	A compact and portable optofluidic device for detection of liquid properties and label-free sensing. Journal Physics D: Applied Physics, 2017, 50, 215103.	2.8	7
419	In Vitro and in Vivo Study of Poly(Lactic–co–Glycolic) (PLGA) Membranes Treated with Oxygen Plasma and Coated with Nanostructured Hydroxyapatite Ultrathin Films for Guided Bone Regeneration Processes. Polymers, 2017, 9, 410.	4.5	7
420	Electron Beam Evaporated vs. Magnetron Sputtered Nanocolumnar Porous Stainless Steel: Corrosion Resistance, Wetting Behavior and Anti-bacterial Activity. Materials Today Communications, 2022, 31, 103266.	1.9	7
421	EPR study of the coordination sphere of Mo5+ ions in UV-irradiated silica-supported molybdenum catalysts. Journal of Catalysis, 1991, 131, 300-303.	6.2	6
422	Chemical effects in TiO2 and titanates due to bombardment with Ar+ and O 2 + ions of different energies (3.5-10 keV). Applied Physics A: Materials Science and Processing, 1996, 63, 237-242.	2.3	6
423	Gas temperature equation in a high-frequency argon plasma column at low pressures. Physics of Plasmas, 2002, 9, 358-363.	1.9	6
424	Structural phase transitions in ZrO2 films induced by ion bombardment—Argon irradiation versus implantation. Journal of Applied Physics, 2003, 93, 5251-5254.	2.5	6
425	Synthesis of undoped and Ni doped InTaO4 photoactive thin films by metal organic chemical vapor deposition. Surface and Coatings Technology, 2007, 201, 9365-9368.	4.8	6
426	UV irradiation effects on TiO ₂ thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1164-1167.	0.8	6
427	Structural control in porous/compact multilayer systems grown by magnetron sputtering. Nanotechnology, 2017, 28, 465605.	2.6	6
428	Nanostructural Analysis of Porous Oblique Angle Deposited (OAD) Multilayer Systems by Grazingâ€Incidence Smallâ€Angle Xâ€Ray Scattering. Advanced Materials Interfaces, 2018, 5, 1800530.	3.7	6
429	Environmentally Tight TiO ₂ –SiO ₂ Porous 1Dâ€Photonic Structures. Advanced Materials Interfaces, 2019, 6, 1801212.	3.7	6
430	Thin film electroluminescent device based on magnetron sputtered Tb doped ZnGa2O4 layers. Journal of Luminescence, 2020, 228, 117617.	3.1	6
431	Electrical and reaction performances of packedâ€bed plasma reactors moderated with ferroelectric or dielectric materials. Plasma Processes and Polymers, 2021, 18, 2000193.	3.0	6
432	New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries. Nanomaterials, 2021, 11, 966.	4.1	6

#	Article	IF	CITATIONS
433	Wetting and spreading of liquid lithium onto nanocolumnar tungsten coatings tailored through the topography of stainless steel substrates. Nuclear Fusion, 2020, 60, 126033.	3.5	6
434	Catalytic activity and characterization of platinum implanted in oxide single crystals: Comparison between Pt/α-Al2O3 and Pt/MgO systems after annealing in argon. Surface Science, 1981, 106, 484-488.	1.9	5
435	Cobaltocene intercalation into misfit layer chalcogenides. Journal of the Chemical Society Chemical Communications, 1994, , 1081-1082.	2.0	5
436	Chemistry and diffusion processes at the SiO î—,AlN interface. Surface Science, 1998, 395, 326-341.	1.9	5
437	Study of in situ adsorption and intercalation of cobaltocene into SnS2 single crystals by photoelectron spectroscopy. Surface Science, 2001, 477, L295-L300.	1.9	5
438	Oxygenated polymeric thin films deposited from toluene and oxygen by remote plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1655-1664.	2.1	5
439	Microstructure of mixed oxide thin films prepared by magnetron sputtering at oblique angles. Thin Solid Films, 2015, 591, 330-335.	1.8	5
440	Nickel/Copper Bilayerâ€modified Screen Printed Electrode for Glucose Determination in Flow Injection Analysis. Electroanalysis, 2018, 30, 187-193.	2.9	5
441	Graphene Formation Mechanism by the Electrochemical Promotion of a Ni Catalyst. ACS Catalysis, 2019, 9, 11447-11454.	11.2	5
442	Robust label-free CuxCoyOz electrochemical sensors for hexose detection during fermentation process monitoring. Sensors and Actuators B: Chemical, 2020, 304, 127360.	7.8	5
443	Laser-induced scanning transfer deposition of silver electrodes on glass surfaces: A green and scalable technology. Applied Surface Science, 2021, 556, 149673.	6.1	5
444	Extraction of microstructural parameters from sculptured thin films nanoindentation. Surface and Coatings Technology, 2021, 425, 127696.	4.8	5
445	Vapor and liquid optical monitoring with sculptured Bragg microcavities. Journal of Nanophotonics, 2017, 11, 1.	1.0	5
446	Thin film nanostructuring at oblique angles by substrate patterning. Surface and Coatings Technology, 2022, 436, 128293.	4.8	5
447	Titania Enhanced Photocatalysis and Dye Giant Absorption in Nanoporous 1D Bragg Microcavities. ACS Applied Nano Materials, 2022, 5, 5487-5497.	5.0	5
448	SO2 adsorption on Mo\$z.sbnd;Ni/Al2O3 catalysts. Journal of Catalysis, 1983, 83, 235-237.	6.2	4
449	An electron spin resonance study of formation of SO2\$minus; and S\$z.sbnd;O\$z.sbnd;O\$minus; radicals on nickel/alumina catalysts. Journal of Catalysis, 1987, 103, 506-511.	6.2	4
450	EXAFS/XANES studies of the influence of the drying pretreatments on the reducibility of Pt/Al2O3 and Pt-Re/Al2O3 catalysts. Physica B: Condensed Matter, 1989, 158, 158-159.	2.7	4

#	Article	IF	CITATIONS
451	The use of EXAFS spectroscopy to show the structural modifications in metals implanted with N+ ions. Surface and Coatings Technology, 1996, 83, 109-114.	4.8	4
452	Characterization of mixed Ti/Al oxide thin films prepared by ion-beam-induced CVD. Applied Surface Science, 2000, 161, 209-218.	6.1	4
453	Gas Temperature Measurement in a Surface-Wave Argon Plasma Column at Low Pressures. Japanese Journal of Applied Physics, 2002, 41, 5787-5791.	1.5	4
454	Growth mechanisms of SiO2 thin films prepared by plasma enhanced chemical vapour deposition. Surface and Coatings Technology, 2005, 200, 881-885.	4.8	4
455	Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces. Journal of Physics: Conference Series, 2010, 252, 012013.	0.4	4
456	Isotope labelling to study molecular fragmentation during the dielectric barrier discharge wet reforming of methane. Journal of Power Sources, 2016, 325, 501-505.	7.8	4
457	Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture. Applied Physics Letters, 2017, 111, .	3.3	4
458	â€~Reliability of new poly (lactic-co-glycolic acid) membranes treated with oxygen plasma plus silicon dioxide layers for pre-prosthetic guided bone regeneration processes'. Medicina Oral, Patologia Oral Y Cirugia Bucal, 2017, 22, 0-0.	1.7	4
459	Colorimetric energy sensitive scintillator detectors based on luminescent multilayer designs. Sensors and Actuators A: Physical, 2018, 272, 217-222.	4.1	4
460	In Vitro Comparative Study of Oxygen Plasma Treated Poly(Lactic–Co–Glycolic) (PLGA) Membranes and Supported Nanostructured Oxides for Guided Bone Regeneration Processes. Materials, 2018, 11, 752.	2.9	4
461	One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. Nanoscale, 2021, 13, 13882-13895.	5.6	4
462	Factors triggering germination in plasma-activated cotton seeds: water imbibition vs. reactive species' formation. Journal Physics D: Applied Physics, 2021, 54, 325205.	2.8	4
463	CVD induced by ion beams for the preparation of oxide and nitride thin films. European Physical Journal Special Topics, 1999, 09, Pr8-699-Pr8-708.	0.2	4
464	Multiscale ultrafast laser texturing of marble for reduced surface wetting. Applied Surface Science, 2022, 577, 151850.	6.1	4
465	Comparative analysis of the germination of barley seeds subjected to drying, hydrogen peroxide, or oxidative air plasma treatments. Plasma Processes and Polymers, 2022, 19, .	3.0	4
466	Electron spin resonance of vanadium oxide monolayer catalysts. Colloids and Surfaces, 1984, 11, 31-38.	0.9	3
467	XPS Study of TiO ₂ Surfaces Modified by Immersion in Aqueous Solutions. Materials Science Forum, 1988, 25-26, 467-470.	0.3	3
468	Surface microstructure of MgO deposited on SiO2 by analysis of plasmon excitations in photoemission experiments. Surface Science, 2001, 482-485, 1325-1330.	1.9	3

#	Article	IF	CITATIONS
469	Near edge x-ray absorption fine structure spectroscopy study of atomic nitrogen implanted in Al2O3 by low energy N2+ bombardment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1024-1026.	2.1	3
470	Analysis of SiOxCyHz polymeric materials by x-ray absorption spectroscopy: Anomalous behavior of the resonant SiKLL Auger spectra. Journal of Applied Physics, 2006, 100, 033706.	2.5	3
471	A Full Vacuum Approach for the Fabrication of Hybrid White-Light-Emitting Thin Films and Wide-Range In Situ Tunable Luminescent Microcavities. Advanced Optical Materials, 2016, 4, 1124-1131.	7.3	3
472	Silver and gold nanoparticles in nanometric confined templates: synthesis and alloying within the anisotropic pores of oblique angle deposited films. Nanotechnology, 2017, 28, 485602.	2.6	3
473	Dye Giant Absorption and Light Confinement Effects in Porous Bragg Microcavities. ACS Photonics, 2018, 5, 984-991.	6.6	3
474	2D compositional self-patterning in magnetron sputtered thin films. Applied Surface Science, 2019, 480, 115-121.	6.1	3
475	Liquid switchable radial polarization converters made of sculptured thin films. Applied Surface Science, 2019, 475, 230-236.	6.1	3
476	Nanostructured nickel based electrocatalysts for hybrid ethanol-water anion exchange membrane electrolysis. Journal of Environmental Chemical Engineering, 2022, 10, 107994.	6.7	3
477	The role of hydrogen in the development of electronic interactions in Ni-titanium oxide systems. Applied Surface Science, 1992, 62, 137-143.	6.1	2
478	The role of Cu in the reactivity of Cu/ZrO2 catalysts for the SCR of NO with CH4. Studies in Surface Science and Catalysis, 2001, , 339-346.	1.5	2
479	Plasma-enhanced chemical vapor deposition of SiO2 from a Si(CH3)3Cl precursor and mixtures Ar/O2 as plasma gas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 900-905.	2.1	2
480	Luminescent Thin Films: Transparent Nanometric Organic Luminescent Films as UV-Active Components in Photonic Structures (Adv. Mater. 6/2011). Advanced Materials, 2011, 23, 684-684.	21.0	2
481	Performance of Porous, Nanocolumnar ZnO Electrodes Obtained at Low Temperature by Plasma-Enhanced Chemical Vapor Deposition in Dye-Sensitized Solar Cells. Energy and Environment Focus, 2013, 2, 270-276.	0.3	2
482	Micronâ€scale wedge thin films prepared by plasma enhanced chemical vapor deposition. Plasma Processes and Polymers, 2017, 14, 1700043.	3.0	2
483	Optofluidic liquid sensing on electromicrofluidic devices. Materials Research Express, 2020, 7, 036407.	1.6	2
484	Mechanically Switchable Wetting Petal Effect in Self-Patterned Nanocolumnar Films on Poly(dimethylsiloxane). Nanomaterials, 2021, 11, 2566.	4.1	2
485	Chemical effects in TiO 2 and titanates due to bombardment with Ar + and O + 2 ions of different energies (3.5-10 keV). Applied Physics A: Materials Science and Processing, 1996, 63, 237-242.	2.3	2
486	Effect of CO2 on O2 photo-adsorption on anatase. Reaction Kinetics and Catalysis Letters, 1981, 18, 367-370.	0.6	1

#	Article	IF	CITATIONS
487	XPS study of irradiated polycrystalline TiO2. Surface and Interface Analysis, 1986, 9, 248-248.	1.8	1
488	Function generator to study the dielectric breakdown in thin film structures. , 2001, , .		1
489	Synthesis, characterization, and photoactivity of InTaO4 and In0.9Ni0.1TaO4 thin films prepared by electron evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 127-134.	2.1	1
490	(Invited) Plasma Assisted Oblique Angle Deposition of Transparent and Conductive in-Plane Anisotropic ITO Thin Films. ECS Transactions, 2017, 77, 9-15.	0.5	1
491	Laserâ€induced coloration of ceramic tiles covered with magnetron sputtered precursor layers. Journal of the American Ceramic Society, 2018, 102, 1589.	3.8	1
492	Large gap atmospheric pressure barrier discharges using ferroelectric materials. Plasma Sources Science and Technology, 2019, 28, 075002.	3.1	1
493	Form Birefringence in Resonant Transducers for the Selective Monitoring of VOCs under Ambient Conditions. ACS Applied Materials & Interfaces, 2021, 13, 19148-19158.	8.0	1
494	Photonic sensor systems for the identification of hydrocarbons and crude oils in static and flow conditions. Sensors and Actuators B: Chemical, 2021, 344, 130265.	7.8	1
495	Plasma Deposition of N-TiO2 Thin Films. , 0, , 349-356.		1
496	Compositional gradients at the nanoscale in substoichiometric thin films deposited by magnetron sputtering at oblique angles: A case study on SiO _{<i>x</i>} thin films. Plasma Processes and Polymers, 2022, 19, 2100116.	3.0	1
497	Reduction of So2 on molybdenum loaded Y zeolite. Studies in Surface Science and Catalysis, 1991, , 339-346.	1.5	0
498	Changes in Structure and Composition of Silicon Oxide Thin Films Induced by Ultraviolet Illumination. Materials Research Society Symposia Proceedings, 1996, 441, 211.	0.1	0
499	SnO2 thin films prepared by ion beam induced CVD. Preparation and characterization. European Physical Journal Special Topics, 1999, 09, Pr8-749-Pr8-755.	0.2	0
500	Dielectric breakdown of SiO/sub 2/ thin films deposited by ion beam induced and plasma enhanced CVD. , 0, , .		0
501	Faceting of (001) CeO2Films: The Road to High Quality TFA-YBa2Cu3O7Multilayers. Journal of Physics: Conference Series, 2006, 43, 138-141.	0.4	0
502	Dichroic Optical Structures: Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes (Adv. Mater. 7/2011). Advanced Materials, 2011, 23, 800-800.	21.0	0
503	Back Cover: Plasma Process. Polym. 3â^•2014. Plasma Processes and Polymers, 2014, 11, 300-300.	3.0	0

Bragg Reflectors: Flexible Distributed Bragg Reflectors from Nanocolumnar Templates (Advanced) Tj ETQq0 0 0 rgBT. Overlock 10 Tf 50

#	Article	IF	CITATIONS
505	White Light Emission: A Full Vacuum Approach for the Fabrication of Hybrid Whiteâ€Lightâ€Emitting Thin Films and Wideâ€Range In Situ Tunable Luminescent Microcavities (Advanced Optical Materials 7/2016). Advanced Optical Materials, 2016, 4, 1134-1134.	7.3	0
506	Anisotropic Resistivity ITO Surfaces produced by Laser-induced Self-organization at the Nanoscale. , 2021, , .		0
507	Characterization of Thin Films by X-Ray Absorption Spectroscopy. , 1997, , 307-316.		Ο
508	Vapor and liquid optical monitoring with sculptured Bragg microcavities. , 2017, , .		0
509	Rhodamine 6G and 800 intermolecular heteroaggregates embedded in PMMA for Near-Infrared wavelength shifting. Journal of Materials Chemistry C, 0, , .	5.5	Ο
510	Electron spin resonance of vanadium oxide monolayer catalysts. Colloids and Surfaces, 1984, 11, 31-38.	0.9	0