
Sunil Chauhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural, optical and photocatalytic properties of Ni doped BiFeO3 nanoparticles. Materials Today: Proceedings, 2022, 49, 3015-3021.	0.9	11
2	Recent advances on magnetoelectric coupling in BiFeO3: Technological achievements and challenges. Materials Today: Proceedings, 2022, 49, 3046-3049.	0.9	4
3	Phase formation and spectroscopy analysis of doped bismuth ferrite nanoparticles. Materials Today: Proceedings, 2022, 49, 3453-3456.	0.9	1
4	Crystal structure refinement and magnetic properties of Sm3+ doped BiFeO3 nanoparticles. Physica B: Condensed Matter, 2022, 624, 413374.	1.3	6
5	Influence of novel Cd – Ni co-substitution on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Journal of Alloys and Compounds, 2022, 894, 162552.	2.8	10
6	Structural, magnetic, optical, and photocatalytic properties of Ca–Ni doped BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 16856-16873.	1.1	2
7	Effects of Sm and Cr co-doping on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115859.	1.7	10
8	Synthesis and characterization of samarium substituted bismuth ferrites nanoparticles. Materials Today: Proceedings, 2021, 34, 813-816.	0.9	3
9	Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Materials Chemistry and Physics, 2021, 263, 124402.	2.0	10
10	Manifestation of multifunction capabilities by stabilizing cadmium together with zinc and aluminum in spinel oxide. Journal of Materials Science: Materials in Electronics, 2021, 32, 15317-15330.	1.1	6
11	Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 20191-20209.	1.1	17
12	Phase transition and optical properties of samarium-doped BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 19950-19960.	1.1	8
13	Structural, optical, magnetic, dielectric, and photocatalytic properties of Sm- and Ni-substituted BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 7798-7810.	1.1	6
14	Ca–Li substitution driven structural, dynamics of electron density, magnetic and optical properties of BiFeO3 nanoparticles. Journal of Alloys and Compounds, 2019, 811, 151965.	2.8	15
15	Structural, magnetic, dielectric, vibrational and optical properties of Zr substituted Bi0.90Gd0.10FeO3 multiferroics. Journal of Alloys and Compounds, 2018, 735, 684-691.	2.8	5
16	Antibacterial activity and ferroelectric properties of Nd3+ doped ZnO nanostructured materials. AIP Conference Proceedings, 2018, , .	0.3	1
17	Room temperature multiferroic properties of rapid liquid phase sintered Pb+2 doped bismuth ferrite. AIP Conference Proceedings, 2018, , .	0.3	0
18	Effect of Ca and Ni co-substitution on structural and magnetic properties of BiFeO3 nanoparticles. AIP Conference Proceedings, 2018, , .	0.3	0

SUNIL CHAUHAN

#	Article	IF	CITATIONS
19	Raman spectroscopy probed spin-two phonon coupling and improved magnetic and optical properties in Dy and Zr substituted BiFeO3 nanoparticles. Journal of Alloys and Compounds, 2017, 692, 236-242.	2.8	19
20	Substitution driven structural and magnetic properties and evidence of spin phonon coupling in Sr-doped BiFeO ₃ nanoparticles. RSC Advances, 2016, 6, 68028-68040.	1.7	34
21	Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO3 nanoparticles. AIP Conference Proceedings, 2016, , .	0.3	4
22	Substitution driven structural and magnetic transformation in Ca-doped BiFeO ₃ nanoparticles. RSC Advances, 2016, 6, 43080-43090.	1.7	68
23	A comparative study on structural, vibrational, dielectric and magnetic properties of microcrystalline BiFeO3, nanocrystalline BiFeO3 and core–shell structured BiFeO3@SiO2 nanoparticles. Journal of Alloys and Compounds, 2016, 666, 454-467.	2.8	46
24	Structural modification and enhanced magnetic properties with two phonon modes in Ca–Co codoped BiFeO3 nanoparticles. Ceramics International, 2015, 41, 14306-14314.	2.3	17
25	Spin-phonon coupling and improved multiferroic properties of Zr substituted BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2014, 25, 4286-4299.	1.1	16
26	Size dependent structural, vibrational and magnetic properties of BiFeO3 and core-shell structured BiFeO3@SiO2 nanoparticles. , 2014, , .		3
27	Effect of Non-magnetic lons Substitution on Structural, Magnetic and Optical Properties of BiFeO3 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1867-1871.	0.8	24
28	Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. Journal of Physics and Chemistry of Solids, 2014, 75, 105-108.	1.9	79
29	Evidence of spin-two phonon coupling and improved multiferroic behavior of Bi1â^'xDyxFeO3 nanoparticles. Ceramics International, 2014, 40, 13347-13356.	2.3	21
30	Structural, magnetic and optical properties of Ho–Co codoped BiFeO3 nanoparticles. Materials Letters, 2014, 132, 327-330.	1.3	12
31	Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceramics International, 2014, 40, 7805-7816.	2.3	65
32	Structural, magnetic and optical properties of Bi1â^'xDyxFeO3 nanoparticles synthesized by sol–gel method. Materials Letters, 2013, 96, 71-73.	1.3	30
33	Structural, raman, dielectric, magnetic and magnetoelectric properties of Ba and Mn doped BiFeO <inf>3</inf> nanoparticles. , 2013, , .		3
34	Structural, vibrational, optical and magnetic properties of sol–gel derived Nd doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2013, 24, 5102-5110.	1.1	49
35	Rietveld analysis, magnetic, vibrational and impedance properties of (Bi1â^xPrx)(Fe1â^xZrx)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 5023-5034.	1.1	9
36	Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route. Journal of Superconductivity and Novel Magnetism, 2013, 26, 443-448.	0.8	59

#	Article	IF	CITATIONS
37	Structural, vibrational, optical, magnetic and dielectric properties of Bi 1â^'x Ba x FeO 3 nanoparticles. Ceramics International, 2013, 39, 6399-6405.	2.3	94
38	Structural, magnetic, and optical properties of Pr and Zr codoped BiFeO3 multiferroic ceramics. Journal of Applied Physics, 2012, 112, .	1.1	97
39	Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Communications, 2012, 152, 525-529.	0.9	147