Graciela Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466679/publications.pdf

Version: 2024-02-01

201385 161609 4,073 112 27 54 citations h-index g-index papers 135 135 135 3505 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 671-681.	2.2	415
2	Utilizing social media data for pharmacovigilance: A review. Journal of Biomedical Informatics, 2015, 54, 202-212.	2.5	401
3	Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Journal of Biomedical Informatics, 2015, 53, 196-207.	2.5	293
4	BANNER: AN EXECUTABLE SURVEY OF ADVANCES IN BIOMEDICAL NAMED ENTITY RECOGNITION. , 2007, , .		190
5	BANNER: an executable survey of advances in biomedical named entity recognition. Pacific Symposium on Biocomputing, 2008, , 652-63.	0.7	169
6	Social Media Mining for Toxicovigilance: Automatic Monitoring of Prescription Medication Abuse from Twitter. Drug Safety, 2016, 39, 231-240.	1.4	162
7	Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. Journal of Biomedical Informatics, 2016, 62, 148-158.	2.5	140
8	Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery. Briefings in Bioinformatics, 2016, 17, 33-42.	3.2	131
9	The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text. BMC Bioinformatics, 2011, 12, S3.	1.2	121
10	Inter-species normalization of gene mentions with GNAT. Bioinformatics, 2008, 24, i126-i132.	1.8	90
11	Enhancing clinical concept extraction with distributional semantics. Journal of Biomedical Informatics, 2012, 45, 129-140.	2.5	89
12	Capturing the Patient's Perspective: a Review of Advances in Natural Language Processing of Health-Related Text. Yearbook of Medical Informatics, 2017, 26, 214-227.	0.8	89
13	Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter. JAMA Network Open, 2019, 2, e1914672.	2.8	72
14	Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1274-1283.	2.2	67
15	SOCIAL MEDIA MINING FOR PUBLIC HEALTH MONITORING AND SURVEILLANCE. , 2016, , .		66
16	The GNAT library for local and remote gene mention normalization. Bioinformatics, 2011, 27, 2769-2771.	1.8	63
17	Overview of the Fourth Social Media Mining for Health (SMM4H) Shared Tasks at ACL 2019. , 2019, , .		58
18	Assessment of Beliefs and Attitudes About Statins Posted on Twitter. JAMA Network Open, 2020, 3, e208953.	2.8	54

#	Article	IF	Citations
19	Overview of the Sixth Social Media Mining for Health Applications (#SMM4H) Shared Tasks at NAACL 2021., 2021,,.		50
20	An unsupervised and customizable misspelling generator for mining noisy health-related text sources. Journal of Biomedical Informatics, 2018, 88, 98-107.	2.5	48
21	Overview of the Third Social Media Mining for Health (SMM4H) Shared Tasks at EMNLP 2018. , 2018, , .		48
22	Discovering Cohorts of Pregnant Women From Social Media for Safety Surveillance and Analysis. Journal of Medical Internet Research, 2017, 19, e361.	2.1	48
23	A corpus for mining drug-related knowledge from Twitter chatter: Language models and their utilities. Data in Brief, 2017, 10, 122-131.	0.5	47
24	Overview of the gene ontology task at BioCreative IV. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau086-bau086.	1.4	45
25	Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set. Journal of Medical Internet Research, 2021, 23, e25314.	2.1	45
26	Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. Journal of Biomedical Informatics, 2018, 87, 68-78.	2.5	40
27	Pharmacoepidemiologic Evaluation of Birth Defects from Health-Related Postings in Social Media During Pregnancy. Drug Safety, 2019, 42, 389-400.	1.4	39
28	Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. AMIA Annual Symposium proceedings, 2014, 2014, 924-33.	0.2	39
29	Methods to Compare Adverse Events in Twitter to FAERS, Drug Information Databases, and Systematic Reviews: Proof of Concept with Adalimumab. Drug Safety, 2018, 41, 1397-1410.	1.4	37
30	Pregnancy and health in the age of the Internet: A content analysis of online "birth club―forums. PLoS ONE, 2020, 15, e0230947.	1.1	37
31	Towards generating a patient's timeline: Extracting temporal relationships from clinical notes. Journal of Biomedical Informatics, 2013, 46, S40-S47.	2.5	36
32	Enhancing phylogeography by improving geographical information from GenBank. Journal of Biomedical Informatics, 2011, 44, S44-S47.	2.5	33
33	Deep neural networks ensemble for detecting medication mentions in tweets. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1618-1626.	2.2	32
34	A systematic approach to active and cooperative learning in CS1 and its effects on CS2., 2006,,.		29
35	SOCIAL MEDIA MINING SHARED TASK WORKSHOP. , 2016, , .		29
36	Efficient Extraction of Protein-Protein Interactions from Full-Text Articles. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 481-494.	1.9	28

#	Article	IF	CITATIONS
37	Preparing next-generation scientists for biomedical big data: artificial intelligence approaches. Personalized Medicine, 2019, 16, 247-257.	0.8	28
38	Deep neural networks and distant supervision for geographic location mention extraction. Bioinformatics, 2018, 34, i565-i573.	1.8	26
39	Knowledge-driven geospatial location resolution for phylogeographic models of virus migration. Bioinformatics, 2015, 31, i348-i356.	1.8	23
40	DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2184-2192.	2.2	22
41	SemEval-2019 Task 12: Toponym Resolution in Scientific Papers. , 2019, , .		22
42	Incremental Information Extraction Using Relational Databases. IEEE Transactions on Knowledge and Data Engineering, 2012, 24, 86-99.	4.0	21
43	Phonetic spelling filter for keyword selection in drug mention mining from social media. AMIA Summits on Translational Science Proceedings, 2014, 2014, 90-5.	0.4	21
44	A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 934-941.	2.2	20
45	Ideas for how informaticians can get involved with COVID-19 research. BioData Mining, 2020, 13, 3.	2.2	20
46	Detecting Personal Medication Intake in Twitter: An Annotated Corpus and Baseline Classification System. , 2017, , .		20
47	An interpretable natural language processing system for written medical examination assessment. Journal of Biomedical Informatics, 2019, 98, 103268.	2.5	19
48	A natural language processing pipeline to advance the use of Twitter data for digital epidemiology of adverse pregnancy outcomes. Journal of Biomedical Informatics, 2020, 112, 100076.	2.5	19
49	Promoting Reproducible Research for Characterizing Nonmedical Use of Medications Through Data Annotation: Description of a Twitter Corpus and Guidelines. Journal of Medical Internet Research, 2020, 22, e15861.	2.1	17
50	Towards scaling Twitter for digital epidemiology of birth defects. Npj Digital Medicine, 2019, 2, 96.	5.7	16
51	SQL+D., 1998,,.		15
52	FINDING POTENTIALLY UNSAFE NUTRITIONAL SUPPLEMENTS FROM USER REVIEWS WITH TOPIC MODELING. , 2016, , .		15
53	GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records. Bioinformatics, 2018, 34, 1606-1608.	1.8	12
54	Disease associations depend on visit type: results from a visit-wide association study. BioData Mining, 2019, 12, 15.	2,2	12

#	Article	IF	CITATIONS
55	Incorporating sampling uncertainty in the geospatial assignment of taxa for virus phylogeography. Virus Evolution, 2019, 5, vey043.	2.2	12
56	Public Perspectives on Anti-Diabetic Drugs: Exploratory Analysis of Twitter Posts. JMIR Diabetes, 2021, 6, e24681.	0.9	12
57	A Hybrid System for Emotion Extraction from Suicide Notes. Biomedical Informatics Insights, 2012, 5s1, BII.S8981.	4.6	11
58	A Rule-based Approach to Determining Pregnancy Timeframe from Contextual Social Media Postings. , 2018, , .		11
59	Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts― Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 577-579.	2.2	11
60	#Science: The Potential and the Challenges of Utilizing Social Media and Other Electronic Communication Platforms in Health Care. Clinical and Translational Science, 2020, 13, 26-30.	1.5	11
61	A Comparative View of Reported Adverse Effects of Statins in Social Media, Regulatory Data, Drug Information Databases and Systematic Reviews. Drug Safety, 2021, 44, 167-179.	1.4	11
62	ReportAGE: Automatically extracting the exact age of Twitter users based on self-reports in tweets. PLoS ONE, 2022, 17, e0262087.	1.1	11
63	Using Empirically Constructed Lexical Resources for Named Entity Recognition. Biomedical Informatics Insights, 2013, 6s1, BII.S11664.	4.6	10
64	Named entity linking of geospatial and host metadata in GenBank for advancing biomedical research. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	10
65	Dealing with Medication Non-Adherence Expressions in Twitter. , 2018, , .		10
66	Natural language processing methods for enhancing geographic metadata for phylogeography of zoonotic viruses. AMIA Summits on Translational Science Proceedings, 2014, 2014, 102-11.	0.4	10
67	FINDING POTENTIALLY UNSAFE NUTRITIONAL SUPPLEMENTS FROM USER REVIEWS WITH TOPIC MODELING. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2016, 21, 528-39.	0.7	10
68	Active neural networks to detect mentions of changes to medication treatment in social media. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2551-2561.	2.2	9
69	HLP\$@\$UPenn at SemEval-2017 Task 4A: A simple, self-optimizing text classification system combining dense and sparse vectors., 2017,,.		9
70	Adolescent Perceptions of Menstruation on Twitter: Opportunities for Advocacy and Education. Journal of Adolescent Health, 2022, 71, 94-104.	1.2	9
71	Using Twitter Data for Cohort Studies of Drug Safety in Pregnancy: Proof-of-concept With \hat{I}^2 -Blockers. JMIR Formative Research, 2022, 6, e36771.	0.7	9
72	GeoBoost2: a natural languageprocessing pipeline for GenBank metadata enrichment for virus phylogeography. Bioinformatics, 2020, 36, 5120-5121.	1.8	7

#	Article	IF	CITATIONS
73	DIEGOLab: An Approach for Message-level Sentiment Classification in Twitter. , 2015, , .		7
74	Methods to Establish Race or Ethnicity of Twitter Users: Scoping Review. Journal of Medical Internet Research, 2022, 24, e35788.	2.1	7
75	An annotated data set for identifying women reporting adverse pregnancy outcomes on Twitter. Data in Brief, 2020, 32, 106249.	0.5	6
76	Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology. AMIA Annual Symposium proceedings, 2017, 2017, 679-688.	0.2	6
77	A Distributional Semantics Approach to Simultaneous Recognition of Multiple Classes of Named Entities. Lecture Notes in Computer Science, 2010, , 224-235.	1.0	5
78	Towards Automating Location-Specific Opioid Toxicosurveillance from Twitter via Data Science Methods. Studies in Health Technology and Informatics, 2019, 264, 333-337.	0.2	5
79	GeneRanker: An Online System for Predicting Gene-Disease Associations for Translational Research. Summit on Translational Bioinformatics, 2008, 2008, 26-30.	0.7	5
80	A chronological and geographical analysis of personal reports of COVID-19 on Twitter from the UK. Digital Health, 2022, 8, 205520762210975.	0.9	5
81	Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models. JMIR Aging, 2022, 5, e39547.	1.4	5
82	Alan: An Action Language For Modelling Non-Markovian Domains. Studia Logica, 2005, 79, 115-134.	0.4	4
83	Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature. , 2018, , .		4
84	DiegoLab16 at SemEval-2016 Task 4: Sentiment Analysis in Twitter using Centroids, Clusters, and Sentiment Lexicons. , 2016, , .		4
85	Automatic gene prioritization in support of the inflammatory contribution to Alzheimer's disease. AMIA Summits on Translational Science Proceedings, 2014, 2014, 42-7.	0.4	4
86	Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical Literature. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2019, 24, 100-111.	0.7	4
87	Advances in Text Mining and Visualization for Precision Medicine. , 2018, , .		3
88	UPennHLP at WNUT-2020 Task 2 : Transformer models for classification of COVID19 posts on Twitter. , 2020, , .		3
89	Extracting geographic locations from the literature for virus phylogeography using supervised and distant supervision methods. AMIA Summits on Translational Science Proceedings, 2017, 2017, 114-122.	0.4	3
90	Advances in Text Mining and Visualization for Precision Medicine. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2018, 23, 559-565.	0.7	3

#	Article	IF	Citations
91	Toward Using Twitter Data to Monitor COVID-19 Vaccine Safety in Pregnancy: Proof-of-Concept Study of Cohort Identification. JMIR Formative Research, 2022, 6, e33792.	0.7	3
92	TEXT AND DATA MINING FOR BIOMEDICAL DISCOVERY- SESSION INTRODUCTION. , 2013, 2013, 368-72.		2
93	Unsupervised gene function extraction using semantic vectors. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau084-bau084.	1.4	2
94	Natural Language Processing Methods for Enhancing Geographic Metadata for Phylogeography of Zoonotic Viruses. , 2014 , , .		2
95	Automatic Prediction of Linguistic Decline in Writings of Subjects with Degenerative Dementia. , 2016, ,		2
96	The DIEGO Lab Graph Based Gene Normalization System., 2011,,.		1
97	Authors' Reply to Jouanjus and Colleagues' Comment on "Social Media Mining for Toxicovigilance: AutomaticÂMonitoring of Prescription Medication Abuse from Twitter― Drug Safety, 2017, 40, 187-188.	1.4	1
98	Addressing Extreme Imbalance for Detecting Medications Mentioned in Twitter User Timelines. Lecture Notes in Computer Science, 2021, , 93-102.	1.0	1
99	16. Adolescent Perceptions of Menstruation on Twitter: Opportunities for Advocacy and Education. Journal of Adolescent Health, 2021, 68, S9.	1.2	1
100	Automatically Identifying Comparator Groups on Twitter for Digital Epidemiology of Pregnancy Outcomes. AMIA Summits on Translational Science Proceedings, 2020, 2020, 317-325.	0.4	1
101	Towards Automatic Bot Detection in Twitter for Health-related Tasks. AMIA Summits on Translational Science Proceedings, 2020, 2020, 136-141.	0.4	1
102	Toward Using Twitter for PrEP-Related Interventions: An Automated Natural Language Processing Pipeline for Identifying Gay or Bisexual Men in the United States. JMIR Public Health and Surveillance, 2022, 8, e32405.	1.2	1
103	Intervals Help to Design an Imaging System. Reliable Computing, 1998, 4, 103-104.	0.8	0
104	Towards automatic extraction of social networks of organizations in PubMed abstracts. , 2009, , .		0
105	GenerlE: Information extraction using database queries. , 2010, , .		0
106	Evaluating Distributional Semantic and Feature Selection for Extracting Relationships from Biological Text. , 2011 , , .		0
107	CANCER PATHWAYS: AUTOMATIC EXTRACTION, REPRESENTATION, AND REASONING IN THE 'BIG DATA' ERA. , 2014, , .		0
108	PSB 2019 Workshop on Text Mining and Visualization for Precision Medicine., 2018,,.		0

#	Article	IF	CITATIONS
109	An empirical evaluation of electronic annotation tools for Twitter data. Genomics and Informatics, 2020, 18, e24.	0.4	0
110	An Analysis of a Twitter Corpus for Training a Medication Intake Classifier. AMIA Summits on Translational Science Proceedings, 2019, 2019, 102-106.	0.4	0
111	Advanced Methods for Big Data Analytics in Women's Health. , 2020, , .		0
112	Best Practices on Big Data Analytics to Address Sex-Specific Biases in Our Understanding of the Etiology, Diagnosis, and Prognosis of Diseases. Annual Review of Biomedical Data Science, 2022, 5, .	2.8	0