Li Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466389/publications.pdf

Version: 2024-02-01

		57631	37111
96	9,478	44	96
papers	citations	h-index	g-index
100	100	100	7754
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	15.6	1,617
2	Highâ€Performance Alkaline Polymer Electrolyte for Fuel Cell Applications. Advanced Functional Materials, 2010, 20, 312-319.	7.8	449
3	Constructing ionic highway in alkaline polymer electrolytes. Energy and Environmental Science, 2014, 7, 354-360.	15.6	439
4	Activating Pd by Morphology Tailoring for Oxygen Reduction. Journal of the American Chemical Society, 2009, 131, 602-608.	6.6	437
5	Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?. Energy and Environmental Science, 2015, 8, 177-181.	15.6	418
6	Designing Advanced Alkaline Polymer Electrolytes for Fuel Cell Applications. Accounts of Chemical Research, 2012, 45, 473-481.	7.6	359
7	Multication Side Chain Anion Exchange Membranes. Macromolecules, 2016, 49, 815-824.	2.2	303
8	Alkaline polymer electrolyte fuel cells stably working at 80 °C. Journal of Power Sources, 2018, 390, 165-167.	4.0	256
9	A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochemistry Communications, 2003, 5, 662-666.	2.3	248
10	First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy and Environmental Science, 2012, 5, 7869.	15.6	234
11	An alkaline polymer electrolyte CO ₂ electrolyzer operated with pure water. Energy and Environmental Science, 2019, 12, 2455-2462.	15.6	231
12	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	6.6	220
13	Highly Selective Reduction of CO ₂ to C ₂₊ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catalysis, 2020, 10, 4103-4111.	5.5	220
14	Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nature Communications, 2019, 10, 1506.	5.8	212
15	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
16	Elastic Long-Chain Multication Cross-Linked Anion Exchange Membranes. Macromolecules, 2017, 50, 3323-3332.	2.2	159
17	Collapse in Crystalline Structure and Decline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to 1 nm. Journal of the American Chemical Society, 2007, 129, 15465-15467.	6.6	150
18	A strategy for disentangling the conductivity–stability dilemma in alkaline polymer electrolytes. Energy and Environmental Science, 2013, 6, 2912.	15.6	150

#	Article	IF	Citations
19	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	5 . 5	141
20	A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot "A2 + B4―Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. Journal of Materials Chemistry, 2012, 22, 6374.	6.7	132
21	High-Loading Intermetallic Pt ₃ Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 2018, 30, 1532-1539.	3.2	131
22	Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 \hat{A}° C. Chemical Communications, 2010, 46, 8597.	2.2	122
23	<i>In Situ</i> X-ray Absorption Spectroscopy of a Synergistic Co–Mn Oxide Catalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 1463-1466.	6.6	121
24	A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chemical Science, 2017, 8, 5728-5734.	3.7	113
25	Mechanically Robust Anion Exchange Membranes via Long Hydrophilic Cross-Linkers. Macromolecules, 2017, 50, 2329-2337.	2.2	103
26	The Comparability of Pt to Ptâ€Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C. Angewandte Chemie - International Edition, 2019, 58, 1442-1446.	7.2	99
27	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	5.5	92
28	Highly Stable Alkaline Polymer Electrolyte Based on a Poly(ether ether ketone) Backbone. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13405-13411.	4.0	91
29	Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts. Angewandte Chemie - International Edition, 2016, 55, 6239-6243.	7.2	87
30	An Effective Approach for Alleviating Cation-Induced Backbone Degradation in Aromatic Ether-Based Alkaline Polymer Electrolytes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2809-2816.	4.0	79
31	Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode. International Journal of Hydrogen Energy, 2013, 38, 16264-16268.	3.8	77
32	High-Loading Composition-Tolerant Co–Mn Spinel Oxides with Performance beyond 1 W/cm ² in Alkaline Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 1251-1257.	8.8	77
33	AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. Journal of Materials Chemistry, 2012, 22, 15769.	6.7	68
34	Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application. International Journal of Hydrogen Energy, 2013, 38, 1983-1987.	3.8	61
35	Varying the microphase separation patterns of alkaline polymer electrolytes. Journal of Materials Chemistry A, 2016, 4, 4071-4081.	5.2	61
36	High-Performance Ga ₂ O ₃ Anode for Lithium-Ion Batteries. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 5519-5526.	4.0	60

#	Article	IF	CITATIONS
37	Noble fabrication of Ni–Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis. International Journal of Hydrogen Energy, 2014, 39, 3055-3060.	3.8	59
38	Ultrathin composite membrane of alkaline polymer electrolyte for fuel cell applications. Journal of Materials Chemistry A, 2013, $1,12497$.	5.2	56
39	Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy, 2016, 29, 268-274.	8.2	55
40	A completely precious metal–free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119883119.	3.3	54
41	Ni(OH)2-Ni/C for hydrogen oxidation reaction in alkaline media. Journal of Energy Chemistry, 2019, 29, 111-115.	7.1	51
42	Tuning the Morphology and Crystal Structure of Li ₂ O ₂ : A Graphene Model Electrode Study for Li–O ₂ Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21350-21357.	4.0	48
43	Inhibition Effect of Surface Oxygenated Species on Ammonia Oxidation Reaction. Journal of Physical Chemistry C, 2011, 115, 23050-23056.	1.5	47
44	Exploring the Composition–Activity Relation of Ni–Cu Binary Alloy Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 3160-3165.	2.5	47
45	Customizable CO ₂ Electroreduction to C ₁ or C ₂₊ Products through Cu _{<i>y</i>} /CeO ₂ Interface Engineering. ACS Catalysis, 2022, 12, 1004-1011.	5 . 5	47
46	A PtRu catalyzed rechargeable oxygen electrode for Li–O ₂ batteries: performance improvement through Li ₂ O ₂ morphology control. Physical Chemistry Chemical Physics, 2014, 16, 20618-20623.	1.3	44
47	Improving the Antioxidation Capability of the Ni Catalyst by Carbon Shell Coating for Alkaline Hydrogen Oxidation Reaction. ACS Applied Materials & Enterfaces, 2020, 12, 31575-31581.	4.0	44
48	Carbonation effects on the performance of alkaline polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2015, 40, 6655-6660.	3.8	42
49	Tuning the Morphology of Li ₂ O ₂ by Noble and 3d metals: A Planar Model Electrode Study for Li–O ₂ Battery. ACS Applied Materials & Diterfaces, 2017, 9, 19800-19806.	4.0	39
50	Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Science China Chemistry, 2021, 64, 1660-1678.	4.2	38
51	Rational determination of exchange current density for hydrogen electrode reactions at carbon-supported Pt catalysts. Electrochimica Acta, 2010, 55, 844-850.	2.6	37
52	Effect of Micromorphology on Alkaline Polymer Electrolyte Stability. ACS Applied Materials & Samp; Interfaces, 2019, 11, 469-477.	4.0	36
53	New second-order nonlinear optical (NLO) hyperbranched polymers containing isolation chromophore moieties derived from one-pot "A2 + B4―approach via Suzuki coupling reaction. RSC Advances, 2012, 2, 6520.	1.7	34
54	Aggregated and ionic cross-linked anion exchange membrane with enhanced hydroxide conductivity and stability. Journal of Power Sources, 2020, 459, 227838.	4.0	32

#	Article	IF	CITATIONS
55	Unraveling the composition-activity relationship of Pt Ru binary alloy for hydrogen oxidation reaction in alkaline media. Journal of Power Sources, 2019, 412, 282-286.	4.0	29
56	Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes. ACS Energy Letters, 2019, 4, 1810-1815.	8.8	28
57	Molecularly Defined Interface Created by Porous Polymeric Networks on Gold Surface for Concerted and Selective CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 17277-17283.	3.2	26
58	Comb-shaped anion exchange membranes: Hydrophobic side chains grafted onto backbones or linked to cations?. Journal of Membrane Science, 2021, 626, 119096.	4.1	26
59	Sulfonated Nanobamboo Fiber-Reinforced Quaternary Ammonia Poly(ether ether ketone) Membranes for Alkaline Polymer Electrolyte Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33581-33588.	4.0	24
60	Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries. Journal of Materials Chemistry A, 2020, 8, 18715-18720.	5.2	24
61	Electrochemical CO2 reduction on heterogeneous cobalt phthalocyanine catalysts with different carbon supports. Chemical Physics Letters, 2020, 754, 137655.	1.2	24
62	Alkaline polymer electrolyte fuel cells without anode humidification and H2 emission. Journal of Power Sources, 2020, 472, 228471.	4.0	23
63	The Comparability of Pt to Ptâ€Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C. Angewandte Chemie, 2019, 131, 1456-1460.	1.6	22
64	Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts. Angewandte Chemie, 2016, 128, 6347-6351.	1.6	21
65	Optimization strategy for fuel-cell catalysts based on electronic effects. RSC Advances, 2011, 1, 1358.	1.7	20
66	Hydrophobic Side-Chain Attached Polyarylether-Based Anion Exchange Membranes with Enhanced Alkaline Stability. ACS Applied Energy Materials, 2019, 2, 8052-8059.	2.5	20
67	A stable zinc-based secondary battery realized by anion-exchange membrane as the separator. Journal of Power Sources, 2021, 486, 229376.	4.0	20
68	Activating Ag by even more inert Au: a peculiar effect on electrocatalysis toward oxygen reduction in alkaline media. Chemical Communications, 2013, 49, 11023.	2.2	19
69	Water induced phase segregation in hydrocarbon proton exchange membranes. Journal of Energy Chemistry, 2018, 27, 1517-1520.	7.1	19
70	Two-Dimensional Ga ₂ O ₃ /C Nanosheets as Durable and High-Rate Anode Material for Lithium Ion Batteries. Langmuir, 2019, 35, 13607-13613.	1.6	19
71	NiGa2O4/rGO Composite as Long-Cycle-Life Anode Material for Lithium-lon Batteries. ACS Applied Materials & Discrete Services, 2019, 11, 8025-8031.	4.0	18
72	Highly conductive and stable hybrid ionic cross-linked sulfonated PEEK for fuel cell. Electrochimica Acta, 2018, 291, 353-361.	2.6	17

#	Article	IF	CITATIONS
73	Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media. Electrochimica Acta, 2019, 327, 135016.	2.6	17
74	Enhanced mass transport and water management of polymer electrolyte fuel cells via 3-D printed architectures. Journal of Power Sources, 2021, 515, 230636.	4.0	17
75	Viologen/Bromide Dual-Redox Electrochemical Capacitor with Two-Electron Reduction of Viologen. ACS Applied Materials & Dividing the ACS ACS Applied Materials & Dividing the ACS Applied Materials &	4.0	16
76	Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2021, 37, 293-297.	1.3	16
77	Theoretical search for novel Au or Ag bimetallic alloys capable of transforming CO2 into hydrocarbons. Journal of Materials Chemistry A, 2019, 7, 20567-20573.	5.2	15
78	A morphology effect of hematite photoanode for photoelectrochemical water oxidation. RSC Advances, 2014, 4, 37701.	1.7	14
79	A high-performance dual-redox electrochemical capacitor using stabilized Zn2+/Zn anolyte and Br3ˉ/Brˉ catholyte. Journal of Power Sources, 2019, 436, 226843.	4.0	14
80	Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. ChemSusChem, 2021, 14, 5021-5031.	3.6	14
81	Bond-energy decoupling: principle and application to heterogeneous catalysis. Chemical Science, 2013, 4, 606-611.	3.7	12
82	Preparation of Mn3O4-CNTs microspheres as an improved sulfur hosts for lithium-sulfur batteries. Materials Letters, 2018, 229, 272-276.	1.3	12
83	Porous, nitrogen-doped Li3V2(PO4)3/C cathode materials derived from oroxylum and their exceptional electrochemical properties in lithium-ion batteries. Ceramics International, 2019, 45, 4980-4989.	2.3	11
84	Highly efficient Fe/N/C catalyst using adenosine as C/N-source for APEFC. Journal of Energy Chemistry, 2017, 26, 616-621.	7.1	10
85	Li 3 V 2 (PO 4) 3 /C composite with hollow coaxial structure for high-capacity and high-rate performance in lithium-ion batteries. Materials Letters, 2018, 216, 46-49.	1.3	9
86	Bio-templated fabrication of lotus root-like Li3V2(PO4)3/C composite from dandelion for use in lithium-ion batteries. Ceramics International, 2019, 45, 13438-13446.	2.3	8
87	Preparation for honeycombed Li3V2(PO4)3/C composites via vacuum-assisted immersion method and their high-rates performance in lithium-ion batteries. Vacuum, 2020, 172, 108926.	1.6	8
88	Preanodized Cu Surface for Selective CO ₂ Electroreduction to C ₁ or C ₂₊ Products. ACS Applied Materials & Interfaces, 2022, 14, 20953-20961.	4.0	8
89	Intermetallic Pt2Si: magnetron-sputtering preparation and electrocatalysis toward ethanol oxidation. Journal of Energy Chemistry, 2014, 23, 265-268.	7.1	6
90	Seed-induced synthesis of flower-like a Li3V2(PO4)3/carbon composite and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 766, 54-65.	2.8	6

#	Article	IF	CITATION
91	Hydrogen Oxidation Reaction on Pdâ€Ni(OH) 2 Composite Electrocatalysts in an Alkaline Electrolyte. ChemistrySelect, 2020, 5, 7803-7807.	0.7	6
92	Ultrathin Self-Cross-Linked Alkaline Polymer Electrolyte Membrane for APEFC Applications. ACS Applied Energy Materials, 2021, 4, 4297-4301.	2.5	5
93	Application of rock-salt-type Co–Mn oxides for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2022, 520, 230868.	4.0	5
94	Dendrite-Free Sn Anode with High Reversibility for Aqueous Batteries Enabled by "Water-in-Salt― Electrolyte. ACS Applied Energy Materials, 2020, 3, 5031-5038.	2.5	4
95	Manganese carbonate as active material in potassium carbonate electrolyte. Chemical Physics Letters, 2020, 738, 136899.	1.2	2
96	<i>In situ</i> surface enhanced Raman spectroscopy study of electrode–polyelectrolyte interfaces. Faraday Discussions, 2021, 233, 100-111.	1.6	2