M Hassan Beyzavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluoride etched Ni-based electrodes as economic oxygen evolution electrocatalysts. International Journal of Hydrogen Energy, 2022, 47, 1613-1623.	3.8	7
2	Fluorinated Cycloplatinated(II) Complexes Bearing Bisphosphine Ligands as Potent Anticancer Agents. Organometallics, 2021, 40, 72-82.	1.1	17
3	Probe metal binding mode of imine covalent organic frameworks: cycloiridation for (photo)catalytic hydrogen evolution from formate. Chemical Science, 2021, 12, 7930-7936.	3.7	14
4	A Bioconjugated Chlorin-Based Metal–Organic Framework for Targeted Photodynamic Therapy of Triple Negative Breast and Pancreatic Cancers. ACS Applied Bio Materials, 2021, 4, 1432-1440.	2.3	19
5	Pt(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Applied Materials & amp; Interfaces, 2021, 13, 6349-6358.	4.0	27
6	Catalyst-Enabled <i>In Situ</i> Linkage Reduction in Imine Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 21740-21747.	4.0	12
7	The Utilization of Para‧ubstituted Triphenylphosphine Derivatives to Synthesize Highly Emissive Cyclometalated Platinum(II) Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 4821.	1.0	6
8	Recombinant peptide fusion construction for proteinâ€ŧemplated catalytic palladium nanoparticles. Biotechnology Progress, 2020, 36, e2956.	1.3	7
9	Using a Faculty-Developed Documentary-Style Film to Communicate Authentic Chemistry Research to a High School Audience. Journal of Chemical Education, 2020, 97, 2351-2355.	1.1	8
10	A C^N Cycloplatinated(II) Fluoride Complex: Photophysical Studies and Csp3–F Bond Formation. Inorganic Chemistry, 2020, 59, 16319-16327.	1.9	17
11	Sulfur-Decorated Hyper-Cross-Linked Coal Tar: A Microporous Organic Polymer for Efficient and Expeditious Mercury Removal. ACS Applied Materials & Interfaces, 2020, 12, 44117-44124.	4.0	19
12	Catalytic Activity, Stability, and Loading Trends of Alcohol Dehydrogenase Enzyme Encapsulated in a Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 26084-26094.	4.0	37
13	Maltotriose Conjugated Metal–Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. Advanced Therapeutics, 2020, 3, 2000029.	1.6	15
14	(Thio)urea-Based Covalent Organic Framework as a Hydrogen-Bond-Donating Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 29212-29217.	4.0	19
15	Translation of HDAC6 PET Imaging Using [¹⁸ F]EKZ-001–cGMP Production and Measurement of HDAC6 Target Occupancy in Nonhuman Primates. ACS Chemical Neuroscience, 2020, 11, 1093-1101.	1.7	26
16	Preparation and Applications of Metal–Organic Frameworks (MOFs): A Laboratory Activity and Demonstration for High School and/or Undergraduate Students. Journal of Chemical Education, 2020, 97, 1109-1116.	1.1	34
17	Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6239-6269.	2.4	96
18	Recombinant Peptide Fusion Proteinâ€Templated Palladium Nanoparticles for Suzukiâ€Miyaura and Stille Coupling Reactions. ChemCatChem, 2020, 12, 2942-2946.	1.8	10

#	Article	IF	CITATIONS
19	Radiosynthesis, in vitro and preliminary in vivo evaluation of the novel glutamine derived PET tracers [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. Nuclear Medicine and Biology, 2020, 86-87, 20-29.	0.3	5
20	Straightforward and Expeditious One-Pot Tandem Synthesis of 3,5-Diaryl-1,2,4-Selenadiazoles from Aryl Nitriles. Synthesis, 2019, 51, 4279-4283.	1.2	0
21	transâ€Platinum(II) Thionate Complexes: Synthesis, Structural Characterization, and inâ€vitro Biological Assessment as Potent Anticancer Agents. ChemPlusChem, 2019, 84, 1525-1535.	1.3	9
22	Multicomponent Synthesis of Diversified Chromeno[3,2- <i>d</i>]oxazoles. ACS Combinatorial Science, 2019, 21, 557-561.	3.8	10
23	Charge Transport through Selfâ€Assembled Monolayers of Monoterpenoids. Angewandte Chemie, 2019, 131, 8181-8186.	1.6	2
24	Synthesis and biological evaluation of thiolate gold(i) complexes as thioredoxin reductase (TrxR) and glutathione reductase (GR) inhibitors. New Journal of Chemistry, 2019, 43, 13173-13182.	1.4	22
25	Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, .	1.2	91
26	Nano-2-(dimethylamino)- <i>N</i> -(silica- <i>n</i> -propyl)- <i>N</i> , <i>N</i> -dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido[2,3- <i>d</i> :6,5- <i>d</i> ′]dipyrimidines. New Journal of Chemistry, 2019, 43, 2247-2257.	1.4	27
27	Aryliodoazide Synthons: A Different Approach for Diversified Synthesis of 2-Aminothiazole, 1,3-Thiazole, and 1,3-Selenazole Scaffolds. ACS Combinatorial Science, 2019, 21, 516-521.	3.8	9
28	Metal-free and benign approach for the synthesis of dihydro-5′ <i>H</i> -spiro[benzo[<i>c</i>]chromene-8,4′-oxazole]-5′,6(7 <i>H</i>)-dione scaffolds as ma amino acids. Green Chemistry, 2019, 21, 2656-2661.	askedd6	6
29	Charge Transport through Selfâ€Assembled Monolayers of Monoterpenoids. Angewandte Chemie - International Edition, 2019, 58, 8097-8102.	7.2	9
30	A Nanostructured Organicâ€Inorganic Hybrid Material: Preparation, Characterization and Catalytic Performance for the Synthesis of N , N ′â€Alkylidene Bisamides. ChemistrySelect, 2019, 4, 3953-3960.	0.7	7
31	Synthesis, structural characterization, biological evaluation and molecular docking studies of new platinum(ii) complexes containing isocyanides. New Journal of Chemistry, 2018, 42, 8681-8692.	1.4	13
32	(Benzyl isocyanide)gold(I) pyrimidineâ€2â€ŧhiolate complex: Synthesis and biological activity. Applied Organometallic Chemistry, 2018, 32, e4200.	1.7	12
33	Cycloplatinated(<scp>ii</scp>) complexes bearing 1,1′-bis(diphenylphosphino)ferrocene ligand: biological evaluation and molecular docking studies. New Journal of Chemistry, 2018, 42, 2385-2392.	1.4	22
34	Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. Comments on Inorganic Chemistry, 2018, 38, 238-293.	3.0	24
35	Micro-flow nanocatalysis: synergic effect of TfOH@SPIONs and micro-flow technology as an efficient and robust catalytic system for the synthesis of plasticizers. RSC Advances, 2018, 8, 37835-37840.	1.7	1
36	Green and Facile Synthesis of Highly Photoluminescent Multicolor Carbon Nanocrystals for Cancer Therapy and Imaging. ACS Applied Bio Materials, 2018, 1, 1458-1467.	2.3	12

M HASSAN BEYZAVI

#	Article	IF	CITATIONS
37	Magnetic Nanoparticle Anchored Deep Eutectic Solvents as a Catalyst for the Etherification and Amination of Naphthols. Advanced Synthesis and Catalysis, 2018, 360, 4372-4380.	2.1	12
38	Highly Emissive Cycloplatinated(II) Complexes Obtained by the Chloride Abstraction from the Complex [Pt(ppy)(PPh ₃)(Cl)]: Employing Various Silver Salts. Organometallics, 2018, 37, 2890-2900.	1.1	16
39	¹⁸ F-Deoxyfluorination of Phenols via Ru π-Complexes. ACS Central Science, 2017, 3, 944-948.	5.3	74
40	Liquidâ€Phase Epitaxially Grown Metal–Organic Framework Thin Films for Efficient Tandem Catalysis Through Siteâ€Isolation of Catalytic Centers. ChemPlusChem, 2016, 81, 708-713.	1.3	21
41	Nitration of arenes by 1-sulfopyridinium nitrate as an ionic liquid and reagent by in situ generation of NO ₂ . RSC Advances, 2016, 6, 89572-89577.	1.7	16
42	Design and characterization of nano-silica-bonded 3-n-propyl-1-sulfonic acid imidazolium chloride {nano-SB-[PSIM]Cl} as a novel, heterogeneous and reusable catalyst for the condensation of arylaldehydes with β-naphthol and alkyl carbamates. Research on Chemical Intermediates, 2016, 42, 2365-2378.	1.3	22
43	Condensation of Aryl Aldehydes, 2â€naphthol, and Thioacetamide Catalyzed by <i>N</i> â€halo Reagents in Neutral Media. Journal of the Chinese Chemical Society, 2015, 62, 850-854.	0.8	3
44	Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH ₂ . Chemical Science, 2015, 6, 2286-2291.	3.7	265
45	Metalââ,¬â€œOrganic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates. Frontiers in Energy Research, 2015, 2, .	1.2	225
46	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	6.6	137
47	Post-assembly transformations of porphyrin-containing metal–organic framework (MOF) films fabricated via automated layer-by-layer coordination. Chemical Communications, 2015, 51, 85-88.	2.2	54
48	Facile preparation of a nanostructured functionalized catalytically active organosalt. Journal of Materials Chemistry A, 2014, 2, 770-777.	5.2	66
49	A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO ₂ Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 2014, 136, 15861-15864.	6.6	470
50	Research Update: A hafnium-based metal-organic framework as a catalyst for regioselective ring-opening of epoxides with a mild hydride source. APL Materials, 2014, 2, .	2.2	7
51	Bulk polymer nanoparticles containing a tetrakis(3-hydroxyphenyl)porphyrin for fast and highly selective separation of mercury ions. Mikrochimica Acta, 2013, 180, 791-799.	2.5	46
52	Synthesis of hexahydroquinolines using the new ionic liquid sulfonic acid functionalized pyridinium chloride as a catalyst. Chinese Journal of Catalysis, 2013, 34, 1936-1944.	6.9	63
53	Synthesis of Functionalized, Sterically Congested Calix[4]phyrin Macrocycles Using Donor–Acceptorâ€5ubstituted Cyclopropanes – First Example of a Monoâ€ <i>meso</i> â€spirolactone Incorporated into a Calix[4]phyrin. European Journal of Organic Chemistry, 2013, 2013, 269-282.	1.2	18
54	Synthesis of New Functionalized Calix[<i>n</i>]phyrin Macrocycles with Varied Ring Sizes by Using a Sterically Congested Dipyrromethane. Chemistry - A European Journal, 2013, 19, 6203-6208.	1.7	13

#	Article	IF	CITATIONS
55	Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines. Journal of Molecular Liquids, 2013, 178, 113-121.	2.3	103
56	Synthesis of Functionalized <i>trans</i> â€A ₂ B ₂ â€Porphyrins Using Donor–Acceptor Cyclopropaneâ€Derived Dipyrromethanes. Advanced Synthesis and Catalysis, 2013, 355, 1409-1422.	2.1	19
57	A highly stable and active magnetically separable Pd nanocatalyst in aqueous phase heterogeneously catalyzed couplings. Green Chemistry, 2013, 15, 2132.	4.6	131
58	Ionic liquid triethylamine-bonded sulfonic acid {[Et3N–SO3H]Cl} as a novel, highly efficient and homogeneous catalyst for the synthesis of β-acetamido ketones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes. Journal of Molecular Liquids, 2012, 167, 69-77.	2.3	135
59	Mannich reaction of secondary amines, aldehydes and alkynes in water using Cu/C nanoparticles as a heterogeneous catalyst. Journal of the Iranian Chemical Society, 2011, 8, S89-S103.	1.2	32
60	A catalyst-free protocol for the green and efficient condensation of indoles with aldehydes in ionic liquids. Canadian Journal of Chemistry, 2009, 87, 416-421.	0.6	53
61	Reusable Porphyrinatoiron(III) Complex Supported on Activated Silica as an Efficient Heterogeneous Catalyst for a Facile, Onea \in Pot, Selective Synthesis of $2a\in$ Arylbenzimidazole Derivatives in the Presence of Atmospheric Air as a $a\in \infty$ Green $a\in$ -Oxidant at Ambient Temperature. European Journal of Organic Chemistry,	1.2	85