
Sandesh Y Sawant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5466120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralow Loading (Singleâ€Atom and Clusters) of the Pt Catalyst by Atomic Layer Deposition Using Dimethyl ((3,4â€î) <i>N</i> , <i>N</i> à€dimethylâ€3â€buteneâ€1â€amineâ€ <i>N</i>) Platinum (DDAP) on the Highâ€Surfaceâ€Area Substrate for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2001508.	3.7	13
2	Hydrogen Evolution Reaction by Atomic Layerâ€Deposited MoN _{<i>x</i>} on Porous Carbon Substrates: The Effects of Porosity and Annealing on Catalyst Activity and Stability. ChemSusChem, 2020, 13, 4159-4168.	6.8	14
3	Microbial fuel cell-assisted biogenic synthesis of gold nanoparticles and its application to energy production and hydrogen peroxide detection. Korean Journal of Chemical Engineering, 2020, 37, 1241-1250.	2.7	16
4	Carbothermal process-derived porous N-doped carbon for flexible energy storage: Influence of carbon surface area and conductivity. Chemical Engineering Journal, 2019, 378, 122158.	12.7	19
5	Bio-synthesis of finely distributed Ag nanoparticle-decorated TiO2 nanorods for sunlight-induced photoelectrochemical water splitting. Journal of Industrial and Engineering Chemistry, 2019, 69, 48-56.	5.8	14
6	Pilot-scale produced super activated carbon with a nanoporous texture as an excellent adsorbent for the efficient removal of metanil yellow. Powder Technology, 2018, 333, 243-251.	4.2	9
7	Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. International Journal of Biological Macromolecules, 2018, 114, 1315-1324.	7.5	115
8	Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@C core–shell ternary plasmonic photocatalyst with enhanced visible-photocatalytic activity. New Journal of Chemistry, 2018, 42, 1995-2005.	2.8	27
9	A metal-free and non-precious multifunctional 3D carbon foam for high-energy density supercapacitors and enhanced power generation in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2018, 60, 431-440.	5.8	27
10	Development of Suitable Anode Materials for Microbial Fuel Cells. , 2018, , 101-124.		3
11	Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Applied Clay Science, 2018, 162, 339-350.	5.2	162
12	Precursor suitability and pilot scale production of super activated carbon for greenhouse gas adsorption and fuel gas storage. Chemical Engineering Journal, 2017, 315, 415-425.	12.7	58
13	Binder-free production of 3D N-doped porous carbon cubes for efficient Pb2+ removal through batch and fixed bed adsorption. Journal of Cleaner Production, 2017, 168, 290-301.	9.3	29
14	Eco-friendly, green and sustainable endo-templated in-situ synthesis of MgO-incorporated carbon from sea salt: An efficient heterogeneous base catalyst. Materials Letters, 2017, 187, 72-75.	2.6	4
15	Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. International Journal of Molecular Sciences, 2017, 18, 25.	4.1	67
16	Facile and single-step route towards ZnO@C core–shell nanoparticles as an oxygen vacancy induced visible light active photocatalyst using the thermal decomposition of Zn(an)2(NO3)2. RSC Advances, 2016, 6, 70644-70652.	3.6	13
17	Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 2016, 6, 25799-25807.	3.6	44
18	Preparation of activated carbon incorporated polysulfone membranes for dye separation. Membrane Water Treatment, 2016, 7, 477-493.	0.5	6

SANDESH Y SAWANT

#	Article	IF	CITATIONS
19	Anchoring Mechanism of ZnO Nanoparticles on Graphitic Carbon Nanofiber Surfaces through a Modified Coâ€Precipitation Method to Improve Interfacial Contact and Photocatalytic Performance. ChemPhysChem, 2015, 16, 3214-3232.	2.1	37
20	Eco-friendly, catalyst-free synthesis of highly pure carbon spheres using vegetable oils as a renewable source and their application as a template for ZnO and MgO hollow spheres. RSC Advances, 2015, 5, 57114-57121.	3.6	5
21	A low temperature bottom-up approach for the synthesis of few layered graphene nanosheets via C–C bond formation using a modified Ullmann reaction. RSC Advances, 2015, 5, 46589-46597.	3.6	33
22	Facile electrochemical assisted synthesis of ZnO/graphene nanosheets with enhanced photocatalytic activity. RSC Advances, 2015, 5, 97788-97797.	3.6	39
23	Greenhouse Gas Adsorptivity of Horn-Shaped Carbon Nanotubes over Nitrogen: Equilibrium Study. Separation Science and Technology, 2014, 49, 1227-1234.	2.5	1
24	Facile hard template approach for synthetic hectorite hollow microspheres. Materials Letters, 2014, 128, 121-124.	2.6	15
25	Solid-state dechlorination pathway for the synthesis of few layered functionalized carbon nanosheets and their greenhouse gas adsorptivity over CO and N2. Carbon, 2014, 68, 210-220.	10.3	26
26	Utilization of Plastic Wastes for Synthesis of Carbon Microspheres and Their Use as a Template for Nanocrystalline Copper(II) Oxide Hollow Spheres. ACS Sustainable Chemistry and Engineering, 2013, 1, 1390-1397.	6.7	36
27	Formation and characterization of onions shaped carbon soot from plastic wastes. Materials Letters, 2013, 94, 132-135.	2.6	34
28	A dechlorination pathway for synthesis of horn shaped carbon nanotubes and its adsorption properties for CO2, CH4, CO and N2. Journal of Hazardous Materials, 2012, 227-228, 317-326.	12.4	30
29	A solvothermal-reduction method for the production of horn shaped multi-wall carbon nanotubes. Carbon, 2010, 48, 668-672.	10.3	27
30	Synthesis of submicron size hollow carbon spheres by a chemical reduction — solvothermal method using carbon tetrachloride as carbon source. Materials Letters, 2009, 63, 2339-2342.	2.6	30