
Xiaosong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5465984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of CX (alkyl groups) on the migration insertion polymerization (MIP) of PFpCX [PFp = (PPh2(CH2)3Cp)Fe(CO)2]. Polymer, 2022, 242, 124574.	3.8	1
2	Synthesis and self-assembly of (C5H5)Fe(CO)2 (Fp)-Based organometallic macromolecules. Polymer, 2022, 245, 124588.	3.8	2
3	Aqueous Self-Assembly of Hydrophobic Molecules Influenced by the Molecular Geometry. Journal of Physical Chemistry B, 2022, , .	2.6	1
4	Reversible Transformation between Azo and Azonium Bond Other than Photoisomerization of Azo Bond in Main-Chain Polyazobenzenes. Journal of Physical Chemistry Letters, 2021, 12, 3655-3661.	4.6	7
5	Polymers via Reversible Addition–Fragmentation Chain Transfer Polymerization with High Thiol End-Group Fidelity for Effective Grafting-To Gold Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 4713-4721.	4.6	8
6	Î,-Solvent-Mediated Double-Shell Polyethylene Glycol Brushes on Nanoparticles for Improved Stealth Properties and Delivery Efficiency. Journal of Physical Chemistry Letters, 2021, 12, 5363-5370.	4.6	8
7	Water-Induced Self-Assembly of Amphiphilic Discotic Molecules for Adaptive Artificial Water Channels. ACS Nano, 2021, 15, 14885-14890.	14.6	10
8	Ring Size-Dependent Solution Behavior of Macrocycles: Dipole–Dipole Attraction Counteracted by Excluded Volume Repulsion. Macromolecules, 2021, 54, 7441-7447.	4.8	6
9	Water-mediated through-space-conjugation of aromatic groups for stimuli-responsive photoluminescence. Giant, 2020, 3, 100028.	5.1	0
10	Growth and Termination of Cylindrical Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules, 2020, 53, 8992-8999.	4.8	29
11	Vesicular Membrane with Structured Interstitial Water. Journal of Physical Chemistry B, 2020, 124, 9239-9245.	2.6	2
12	Active Role of Water in the Hydration of Macromolecules with Ionic End Group for Hydrophobic Effect-Caused Assembly. Macromolecules, 2020, 53, 6842-6849.	4.8	9
13	Competition between Ring-Closing Migratory Insertion Polymerization and Monomer Cyclization. Organometallics, 2020, 39, 2991-2997.	2.3	3
14	Synthesis of polystyrene living nanoparticles (LNPs) in water via nano-confined free radical polymerization. Polymer Chemistry, 2020, 11, 7349-7353.	3.9	0
15	Aromatic Embrace Motifs for Bulk Supramolecular Polymers. Chemistry - A European Journal, 2019, 25, 12221-12227.	3.3	2
16	Overcoming Kinetic Trapping for Morphology Evolution during Polymerizationâ€Induced Selfâ€Assembly. Macromolecular Rapid Communications, 2019, 40, e1900202.	3.9	18
17	A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP. Carbohydrate Polymers, 2019, 205, 322-329.	10.2	66
18	Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-Containing Block Copolymer Assemblies Prepared by Polymerization-Induced Self-Assembly. Macromolecules, 2018, 51, 3308-3314.	4.8	78

XIAOSONG WANG

#	Article	IF	CITATIONS
19	Inverse Pickering Emulsions Stabilized by Cinnamate Modified Cellulose Nanocrystals as Templates To Prepare Silica Colloidosomes. ACS Sustainable Chemistry and Engineering, 2018, 6, 2583-2590.	6.7	59
20	UV-Absorbing Cellulose Nanocrystals as Functional Reinforcing Fillers in Poly(vinyl chloride) Films. ACS Applied Nano Materials, 2018, 1, 632-641.	5.0	56
21	Hierarchical Selfâ€Assembly Induced by Dilutionâ€Enhanced Hydrophobic Hydration. Chemistry - A European Journal, 2018, 24, 6737-6741.	3.3	3
22	Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydrate Polymers, 2018, 182, 61-68.	10.2	76
23	Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydrate Polymers, 2018, 199, 603-609.	10.2	48
24	Chain onformationâ€Directed Polymerization Cyclization for Effective Synthesis of Macrocycles in Bulk. Chemistry - A European Journal, 2018, 24, 15380-15386.	3.3	4
25	Polymer Assemblies with Nanostructure-Correlated Aggregation-Induced Emission. Macromolecules, 2017, 50, 1126-1133.	4.8	106
26	Synthesis of Airâ€Stable Cyclopentadienyl Fe(CO) ₂ (Fp) Polymers by a Host–Guest Interaction of Cyclodextrin with Airâ€Sensitive Fp Pendant Groups. Angewandte Chemie - International Edition, 2017, 56, 6246-6250.	13.8	8
27	Hydrophobic Effect of Alkyl Groups Stabilizing Self-Assembled Colloids in Water. Journal of Physical Chemistry B, 2017, 121, 6280-6285.	2.6	7
28	The Effect of Solution Conditions on the Driving Forces for Selfâ€Assembly of a Pyrene Molecule. Chemistry - A European Journal, 2017, 23, 9736-9740.	3.3	5
29	Aqueous self-assembly of hydrophobic macromolecules with adjustable rigidity of the backbone. Soft Matter, 2017, 13, 5130-5136.	2.7	10
30	Flexibility and Stability of Metal Coordination Macromolecules. Chemistry - A European Journal, 2017, 23, 8280-8285.	3.3	3
31	Synthesis of Airâ€Stable Cyclopentadienyl Fe(CO) ₂ (Fp) Polymers by a Host–Guest Interaction of Cyclodextrin with Airâ€Sensitive Fp Pendant Groups. Angewandte Chemie, 2017, 129, 6342-6346.	2.0	1
32	Self-Assembly of a Strong Polyhedral Oligomeric Silsesquioxane Core-Based Aspartate Derivative Dendrimer Supramolecular Gelator in Different Polarity Solvents. Langmuir, 2017, 33, 13332-13342.	3.5	17
33	Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex. Angewandte Chemie - International Edition, 2017, 56, 16541-16545.	13.8	120
34	Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex. Angewandte Chemie, 2017, 129, 16768-16772.	2.0	12
35	Synthesis and solution behaviour of metal-carbonyl amphiphiles with an Fp (CpFe(CO)2) junction. Journal of Organometallic Chemistry, 2017, 851, 40-45.	1.8	3
36	End Group Functionalization of PFpP Macromolecules Via Fp Migration Insertion Reactions. Macromolecular Rapid Communications, 2016, 37, 246-250.	3.9	8

XIAOSONG WANG

#	Article	IF	CITATIONS
37	Solvent-dependent chain conformation for ring closure of metal carbonyl oligomers via migration insertion polymerization (MIP) of CpFe(CO) ₂ (CH ₂) ₆ PPh ₂ . Polymer Chemistry, 2016, 7, 4419-4426.	3.9	8
38	Highly-integrated, laser manipulable aqueous metal carbonyl vesicles (MCsomes) with aggregation-induced emission (AIE) and aggregation-enhanced IR absorption (AEIRA). Journal of Materials Chemistry C, 2016, 4, 5231-5240.	5.5	15
39	Breathing catalyst-supports: CO ₂ adjustable and magnetic recyclable "smart―hybrid nanoparticles. RSC Advances, 2016, 6, 97030-97035.	3.6	8
40	Aggregation-enhanced IR absorption (AEIRA) of molybdenum-carbonyl organometallic aqueous colloids. Journal of Organometallic Chemistry, 2016, 819, 109-114.	1.8	8
41	Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29203-29207.	8.0	67
42	Strong and fast-recovery organic/inorganic hybrid AuNPs–supramolecular gels based on loofah-like 3D networks. Soft Matter, 2016, 12, 957-964.	2.7	15
43	Iron–Carbonyl Aqueous Vesicles (MCsomes) by Hydration of [Fe(CO){CO(CH ₂) ₅ CH ₃ }(Cp)(PPh ₃)] (FpC6): Highly Integrated Colloids with Aggregationâ€Induced Selfâ€Enhanced IR Absorption (Alâ€SEIRA). Chemistry - A European Journal. 2015. 21. 19223-19230.	3.3	18
44	Synthesis of Mainâ€Chain Metal Carbonyl Organometallic Macromolecules (MCMCOMs). Macromolecular Rapid Communications, 2015, 36, 586-596.	3.9	8
45	Hydration of Hydrophobic Iron–Carbonyl Homopolymers via Water–Carbonyl Interaction (WCI): Creation of Uniform Organometallic Aqueous Vesicles with Exceptionally High Encapsulation Capacity. Macromolecules, 2015, 48, 7968-7977.	4.8	21
46	Synthesis and migration insertion polymerization (MIP) of CpFe(CO) ₂ (CH ₂) ₆ PPh ₂ (FpC6P) for PFpC6P: macromolecule stability, degradability and redox activity. Polymer Chemistry, 2014, 5, 6702-6709.	3.9	12
47	Intermolecular Interactions of CpFePPh ₃ (CO)CO(CH ₂) ₅ CH ₃ : From a Crystalline Solid to a Supramolecular "Iron-Truss―Polymer. ACS Macro Letters, 2014, 3, 1281-1285.	4.8	10
48	Synthesis, Cyclization, and Migration Insertion Oligomerization of CpFe(CO)2(CH2)3PPh2in Solution. Organometallics, 2014, 33, 531-539.	2.3	21
49	Organometallic macromolecules with piano stool coordination repeating units: chain configuration and stimulated solution behaviour. Chemical Communications, 2014, 50, 10062-10065.	4.1	15
50	Supramolecular chemistry of metal complexes in solution. Chemical Communications, 2013, 49, 8133.	4.1	87
51	Synthesis of Prussian Blue Metal Coordination Polymer Nanocubes via Cyanoferrate Monomer Design. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 111-118.	3.7	9
52	Migration Insertion Polymerization (MIP) of Cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP): A New Concept for Main Chain Metal-Containing Polymers (MCPs). Journal of the American Chemical Society, 2013, 135, 3399-3402.	13.7	60
53	Synthesis, characterization, micellization and metal coordination polymerization of pentacyanoferrate-coordinated block copolymers for monodispersed soluble Prussian blue nanospheres. Polymer Chemistry, 2012, 3, 2632.	3.9	22
54	Photoluminescent properties of Prussian Blue (PB) nanoshells and polypyrrole (PPy)/PB core/shell nanoparticles prepared via miniemulsion (periphery) polymerization. Chemical Communications, 2011, 47, 6831.	4.1	42

XIAOSONG WANG

#	Article	IF	CITATIONS
55	Dual lanthanide role in the designed synthesis of hollow metal coordination (Prussian Blue) Tj ETQq1 1 0.78431	4 rgBT /O	verlgck 10 T ^e
56	Recent advances in block copolymer-assisted synthesis of supramolecular inorganic/organic hybrid colloids. Polymer Chemistry, 2011, 2, 2741.	3.9	34
57	Polymeric Biomaterials for Tissue Engineering Applications 2011. International Journal of Polymer Science, 2011, 2011, 1-2.	2.7	20
58	Cytotoxicity and photocytotoxicity of structure-defined water-soluble C ₆₀ <i>/</i> micelle supramolecular nanoparticles. Nanotechnology, 2011, 22, 235604.	2.6	27
59	Inorganicâ€Saltâ€Induced Morphological Transformation of Semicrystalline Micelles of PCL <i>â€bâ€</i> PEO Block Copolymer in Aqueous Solution. Macromolecular Chemistry and Physics, 2010, 211, 1909-1916.	2.2	71
60	Metalâ€Containing Polymers: Building Blocks for Functional (Nano)Materials. Macromolecular Rapid Communications, 2010, 31, 331-350.	3.9	111
61	Synthesis of Prussian Blue Coordination Polymer Nanocubes via Confinement of the Polymerization Field Using Miniemulsion Periphery Polymerization (MEPP). Macromolecular Rapid Communications, 2010, 31, 856-860.	3.9	37
62	Polymeric Biomaterials for Tissue Engineering Applications. International Journal of Polymer Science, 2010, 2010, 1-2.	2.7	5
63	Organosilica Nanoshells with Thin Silica Cross-Linking by Miniemulsion Periphery Polymerization (MEPP). Macromolecules, 2010, 43, 6343-6347.	4.8	11
64	Prussian blue coordination polymer nanobox synthesis using miniemulsion periphery polymerization (MEPP). Chemical Communications, 2010, 46, 4574.	4.1	64
65	Synthesis and Characterization of Organometallic Coordination Polymer Nanoshells of Prussian Blue Using Miniemulsion Periphery Polymerization (MEPP). Journal of the American Chemical Society, 2009, 131, 5378-5379.	13.7	150
66	Redox-Mediated Synthesis and Encapsulation of Inorganic Nanoparticles in Shell-Cross-Linked Cylindrical Polyferrocenylsilane Block Copolymer Micelles. Journal of the American Chemical Society, 2008, 130, 12921-12930.	13.7	115
67	Cylindrical Block Copolymer Micelles and Co-Micelles of Controlled Length and Architecture. Science, 2007, 317, 644-647.	12.6	1,025
68	Shell-Cross-Linked Cylindrical Polyisoprene-b-Polyferrocenylsilane (PI-b-PFS) Block Copolymer Micelles:Â One-Dimensional (1D) Organometallic Nanocylinders. Journal of the American Chemical Society, 2007, 129, 5630-5639.	13.7	105
69	Synthesis, Self-Assembly, and Applications of Polyferrocenylsilane Block Copolymers. ACS Symposium Series, 2006, , 274-291.	0.5	7
70	Synthesis and Self-Assembly of Poly(ferrocenyldimethylsilane-b-dimethylaminoethyl methacrylate):Â Toward Water-Soluble Cylinders with an Organometallic Core. Macromolecules, 2005, 38, 1928-1935.	4.8	58
71	Synthesis of the First Organometallic Miktoarm Star Polymer. Macromolecular Rapid Communications, 2003, 24, 403-407.	3.9	32
72	Synthesis and Solution Self-Assembly of Coilâ^'Crystallineâ^'Coil Polyferrocenylphosphine-b-polyferrocenylsilane-b-polysiloxane Triblock Copolymers. Macromolecules, 2002, 35, 9146-9150.	4.8	39

#	Article	IF	CITATIONS
73	Synthesis, Self-Assembly and Applications of Polyferrocenylsilane (PFS) Block Copolymers. , 0, , 151-168.		ο
74	The Effect of Hydration and Dehydration on the Conformation, Assembling Behavior and Photoluminescence of PBLG. Soft Matter, 0, , .	2.7	3