
## Ali Shawki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5465083/publications.pdf Version: 2024-02-01



ΔΗ SΗΛΜΕΙ

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Autoimmune susceptibility gene <i>PTPN2</i> is required for clearance of adherent-invasive<br><i>Escherichia coli</i> by integrating bacterial uptake and lysosomal defence. Gut, 2022, 71, 89-99.           | 12.1 | 9         |
| 2  | Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunology, 2022, 15, 74-83.                                                         | 6.0  | 10        |
| 3  | Ablation of Na <sup>+</sup> /H <sup>+</sup> exchangerâ€3 prevents tissue iron loading in the Hfe<br>mouse model of hereditary hemochromatosis. FASEB Journal, 2022, 36, .                                    | 0.5  | 0         |
| 4  | T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. Journal of Clinical Investigation, 2021, 131, .                                | 8.2  | 18        |
| 5  | The autoimmune susceptibility gene, <i>PTPN2</i> , restricts expansion of a novel mouse adherent-invasive <i>E. coli</i> . Gut Microbes, 2020, 11, 1547-1566.                                                | 9.8  | 12        |
| 6  | PTPN2 Regulates Interactions Between Macrophages and Intestinal Epithelial Cells to Promote Intestinal Barrier Function. Gastroenterology, 2020, 159, 1763-1777.e14.                                         | 1.3  | 62        |
| 7  | Ablation of Na + /H + exchangerâ€3 prevents iron loading in the Hfe mouse model of hereditary hemochromatosis. FASEB Journal, 2019, 33, 825.2.                                                               | 0.5  | 0         |
| 8  | Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nature<br>Communications, 2018, 9, 3075.                                                                            | 12.8 | 47        |
| 9  | Role of N â€glycosylation in the activity of divalent metalâ€ion transporterâ€1. FASEB Journal, 2018, 32, 876.1.                                                                                             | 0.5  | 0         |
| 10 | Mechanisms of Intestinal Epithelial Barrier Dysfunction byÂAdherent-Invasive Escherichia coli. Cellular<br>and Molecular Gastroenterology and Hepatology, 2017, 3, 41-50.                                    | 4.5  | 87        |
| 11 | Intestinal brush-border Na <sup>+</sup> /H <sup>+</sup> exchanger-3 drives H <sup>+</sup> -coupled<br>iron absorption in the mouse. American Journal of Physiology - Renal Physiology, 2016, 311, G423-G430. | 3.4  | 26        |
| 12 | Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. American Journal of Physiology - Renal Physiology, 2015, 309, G635-G647.         | 3.4  | 94        |
| 13 | Ferroportinâ€mediated cellular iron efflux requires extracellular calcium. FASEB Journal, 2015, 29,<br>566.15.                                                                                               | 0.5  | 0         |
| 14 | Intestinal divalent metalâ€ion transporterâ€1 is required for iron homeostasis in the neonatal mouse.<br>FASEB Journal, 2015, 29, 1011.5.                                                                    | 0.5  | 0         |
| 15 | Ablation of intestinal divalent metalâ€ion transporterâ€1 produces ironâ€deficiency anemia. FASEB Journal,<br>2013, 27, 950.3.                                                                               | 0.5  | 0         |
| 16 | Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1. Journal of<br>Biological Chemistry, 2012, 287, 30485-30496.                                                           | 3.4  | 208       |
| 17 | H+-Coupled Divalent Metal-Ion Transporter-1. Current Topics in Membranes, 2012, 70, 169-214.                                                                                                                 | 0.9  | 74        |
| 18 | Intestinal divalent metalâ€ion transporterâ€1 is critical for iron homeostasis but is not required for<br>maintenance of Cu or Zn. FASEB Journal, 2012, 26, 1112.2.                                          | 0.5  | 2         |

Ali Shawki

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | No evidence that copper is a transported substrate of the iron transporter DMT1. FASEB Journal, 2012, 26, 1112.3.                                                                                      | 0.5 | 0         |
| 20 | Interaction of calcium with the human divalent metal-ion transporter-1. Biochemical and Biophysical Research Communications, 2010, 393, 471-475.                                                       | 2.1 | 48        |
| 21 | Calcium interactions with divalent metal–ion transporter–1 (DMT1). FASEB Journal, 2010, 24, 1017.2.                                                                                                    | 0.5 | 1         |
| 22 | Functional expression in Xenopus oocytes reveals that human ferroportin is an iron exporter shared with zinc. FASEB Journal, 2010, 24, 1017.3.                                                         | 0.5 | 0         |
| 23 | Molecular impact of divalent metalâ€ion transporter (DMT1) mutations (V114del and G212V) found in a compound heterozygote with microcytic anemia and hepatic iron overload. FASEB Journal, 2008, 22, . | 0.5 | 1         |
| 24 | PKC activation downregulates the human Na + /Lâ€escorbic acid transporter SVCT1 via its derecruitment from the plasma membrane. FASEB Journal, 2008, 22, 936.16.                                       | 0.5 | 1         |
| 25 | Cysteinyl residues participate in regulation of SVCT1â€mediated Lâ€ascorbic acid transport. FASEB Journal,<br>2006, 20, A840.                                                                          | 0.5 | Ο         |