

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5464937/publications.pdf Version: 2024-02-01

Γ δ^Å ΄Γ^Ž-

#	Article	IF	CITATIONS
1	Novel high dielectric constant and low loss PTFE/CNT composites. Ceramics International, 2018, 44, 16556-16560.	4.8	48
2	Phase composition and microwave dielectric properties of SrTiO3 modified Mg2Al4Si5O18 cordierite ceramics. Journal of Alloys and Compounds, 2015, 628, 57-62.	5.5	29
3	Investigation of phase composition and microwave dielectric properties of MgOâ€Ta ₂ O ₅ ceramics with ultrahigh Qf value. Journal of the American Ceramic Society, 2018, 101, 3026-3031.	3.8	23
4	The dimensional effect of MgTiO3 ceramic filler on the microwave dielectric properties of PTFE/MgTiO3 composite with ultra-low dielectric loss. Journal of Materials Science: Materials in Electronics, 2019, 30, 6680-6687.	2.2	22
5	Temperatureâ€dependent dielectric and Raman spectra and microwave dielectric properties of gehleniteâ€type Ca ₂ Al ₂ SiO ₇ ceramics. International Journal of Applied Ceramic Technology, 2020, 17, 771-777.	2.1	22
6	Facile fabrication of robust superhydrophobic/superoleophlic Cu coated stainless steel mesh for highly efficient oil/water separation. Separation and Purification Technology, 2021, 256, 117512.	7.9	21
7	Investigation on the anti-reduction mechanism of Ti4+ in high dielectric constant system Ca0.9La0.067TiO3 by doping with Al2O3. Ceramics International, 2018, 44, 6527-6532.	4.8	14
8	Low-firing and microwave dielectric properties of a novel glass-free MoO3-based dielectric ceramic for LTCC applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 7485-7489.	2.2	11
9	Crystal structure, phase evolution and dielectric properties in the Li2ZnTi3O8-SrTiO3 system as temperature stable high-Q material. Journal of Alloys and Compounds, 2019, 797, 18-25.	5.5	9
10	Effects of TiO2 additive on ultra-low-loss MgO–LiF microwave dielectric ceramics. Ceramics International, 2020, 46, 5753-5756.	4.8	9
11	Effects of B2O3 and MgO on the microwave dielectric properties of MgTa2O6 ceramics. Ceramics International, 2019, 45, 24244-24247.	4.8	8
12	5G microstrip patch antenna and microwave dielectric properties of 4Âmol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 23880-23888.	2.2	8
13	Significantly enhanced mechanical strength of MgNb2O6 microwave dielectric ceramics with high Q values. Ceramics International, 2022, 48, 21084-21089.	4.8	7
14	Investigation on microwave dielectric properties and microstructures of (1â^'x) LaAlO3-xCa0.2Sr0.8TiO3 ceramics. Journal of Alloys and Compounds, 2015, 649, 254-260.	5.5	6
15	2.5–5.5 μ4m midâ€infrared emission from Ni 2+ â€doped chalcohalide glass ceramics containing CsPbI 3 perovskite nanocrystals. Journal of the American Ceramic Society, 2021, 104, 5593-5598.	3.8	6
16	Oxygen-vacancy-rich BiOCl materials with ultrahigh photocatalytic efficiency by etching bismuth glass. RSC Advances, 2021, 11, 38894-38906.	3.6	6
17	Study on properties of Ca _{0.9} La _{0.067} TiO ₃ â€0.01Al ₂ O ₃ ceramics reinforced PSAE/fiber composite substrate with high ε _r . Journal of the American Ceramic Society. 2022, 105, 6293-6301.	3.8	5
18	Low temperature sintering and microwave dielectric properties of 0.9(Zn0.9Mg0.1)TiO3-0.1TiO2 ceramics with BBZ glass. Ceramics International, 2018, 44, 13139-13144.	4.8	4

Æ...§Å...´ÆŽ—

#	Article	IF	CITATIONS
19	Low temperature sintering and microwave dielectric properties of Li2ZnTi3O8–TiO2 ceramics doped with BaO–B2O3–ZnO glass. Journal of Materials Science: Materials in Electronics, 2018, 29, 17008-17015.	2.2	4
20	Investigation on phase and microstructures of a temperature stable high-Q Li2Zn0.95Sr0.05Ti3O8 microwave dielectric ceramic. Journal of Materials Science: Materials in Electronics, 2019, 30, 8154-8159.	2.2	4
21	Effect of SrO Content on Structure, Thermal Properties and Chemical Stability of Bi2O3-B2O3-ZnO-SrO Low-melting Glass for Si-Al Alloy Package. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 368-376.	1.0	4
22	Temperature stable microwave dielectric ceramics in Li2ZnTi3O8–based composite for LTCC applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 12978-12985.	2.2	3
23	Investigating the relationship of 1:1 ordering with the quality factor in Sr(Zn1/3Nb2/3)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 5238-5242.	2.2	2
24	The effect of Si3N4 on the thermal and dielectric properties of polytetrafluoroethylene/glass fiber composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 21957-21965.	2.2	2
25	Investigations on sintering behavior and microwave dielectric properties of MgNb2O6 ceramics doping with LiF. Journal of Materials Science: Materials in Electronics, 2021, 32, 24320-24327.	2.2	2