
Annaliesa S Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5464919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An oral SARS-CoV-2 M ^{pro} inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374, 1586-1593.	12.6	1,074
2	A Novel Staphylococcus aureus Vaccine: Iron Surface Determinant B Induces Rapid Antibody Responses in Rhesus Macaques and Specific Increased Survival in a Murine S. aureus Sepsis Model. Infection and Immunity, 2006, 74, 2215-2223.	2.2	233
3	The role of vaccines in preventing bacterial antimicrobial resistance. Nature Medicine, 2018, 24, 10-19.	30.7	228
4	Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nature Communications, 2021, 12, 6055.	12.8	215
5	Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine, 2010, 28, 6086-6093.	3.8	182
6	Sequence Diversity of the Factor H Binding Protein Vaccine Candidate in Epidemiologically Relevant Strains of Serogroup B <i>Neisseria meningitidis</i> . Journal of Infectious Diseases, 2009, 200, 379-389.	4.0	180
7	Vaccine review: "Staphyloccocus aureus vaccines: Problems and prospects― Vaccine, 2013, 31, 2723-2730.	3.8	119
8	<i>Staphylococcus aureus</i> : the current state of disease, pathophysiology and strategies for prevention. Expert Review of Vaccines, 2016, 15, 1373-1392.	4.4	116
9	Capsular polysaccharides are an important immune evasion mechanism for <i>Staphylococcus aureus</i> . Human Vaccines and Immunotherapeutics, 2013, 9, 480-487.	3.3	103
10	Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine, 2011, 29, 4739-4744.	3.8	98
11	Role of Factor H Binding Protein in Neisseria meningitidis Virulence and Its Potential as a Vaccine Candidate To Broadly Protect against Meningococcal Disease. Microbiology and Molecular Biology Reviews, 2013, 77, 234-252.	6.6	96
12	The role of vaccines in fighting antimicrobial resistance (AMR). Human Vaccines and Immunotherapeutics, 2018, 14, 2142-2149.	3.3	95
13	A Comparative Analysis of SARS-CoV-2 Antivirals Characterizes 3CL ^{pro} Inhibitor PF-00835231 as a Potential New Treatment for COVID-19. Journal of Virology, 2021, 95, .	3.4	94
14	Staphylococcus aureus Manganese Transport Protein C Is a Highly Conserved Cell Surface Protein That Elicits Protective Immunity Against S. aureus and Staphylococcus epidermidis. Journal of Infectious Diseases, 2012, 205, 1688-1696.	4.0	88
15	Development of a multicomponent <i>Staphylococcus aureus</i> vaccine designed to counter multiple bacterial virulence factors. Human Vaccines and Immunotherapeutics, 2012, 8, 1585-1594.	3.3	86
16	The Discovery and Development of a Novel Vaccine to Protect against <i>Neisseria meningitidis</i> Serogroup B Disease. Human Vaccines and Immunotherapeutics, 2015, 11, 5-13.	3.3	84
17	<i>Escherichia coli</i> and <i>Staphylococcus aureus</i> : leading bacterial pathogens of healthcare associated infections and bacteremia in older-age populations. Expert Review of Vaccines, 2018, 17, 607-618.	4.4	84
18	A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology (United Kingdom), 2013, 159, 1254-1266.	1.8	81

2

#	Article	IF	CITATIONS
19	Innovative Randomized Phase I Study and Dosing Regimen Selection to Accelerate and Inform Pivotal COVIDâ€19 Trial of Nirmatrelvir. Clinical Pharmacology and Therapeutics, 2022, 112, 101-111.	4.7	76
20	A phase 2 open-label safety and immunogenicity study of a meningococcal B bivalent rLP2086 vaccine in healthy adults. Vaccine, 2013, 31, 1569-1575.	3.8	73
21	Safety and immunogenicity of a novel hexavalent group B streptococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial. Lancet Infectious Diseases, The, 2021, 21, 263-274.	9.1	70
22	Detection of LP2086 on the cell surface of Neisseria meningitidis and its accessibility in the presence of serogroup B capsular polysaccharide. Vaccine, 2009, 27, 3417-3421.	3.8	68
23	A Novel Hexavalent Capsular Polysaccharide Conjugate Vaccine (GBS6) for the Prevention of Neonatal Group B Streptococcal Infections by Maternal Immunization. Journal of Infectious Diseases, 2019, 220, 105-115.	4.0	67
24	Meningococcal carriage in adolescents in the United Kingdom to inform timing of an adolescent vaccination strategy. Journal of Infection, 2015, 71, 43-52.	3.3	61
25	SA4Ag, a 4-antigen Staphylococcus aureus vaccine, rapidly induces high levels of bacteria-killing antibodies. Vaccine, 2017, 35, 1132-1139.	3.8	58
26	The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease. AAPS Journal, 2016, 18, 1562-1575.	4.4	57
27	A Bivalent Meningococcal B Vaccine in Adolescents and Young Adults. New England Journal of Medicine, 2017, 377, 2349-2362.	27.0	57
28	Safety and Immunogenicity of a Meningococcal B Bivalent rLP2086 Vaccine in Healthy Toddlers Aged 18–36 Months. Pediatric Infectious Disease Journal, 2012, 31, 1061-1068.	2.0	57
29	A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine, 2015, 33, 1846-1854.	3.8	56
30	Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen–Manganese Transporter MntC. Journal of Molecular Biology, 2013, 425, 3429-3445.	4.2	54
31	Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. MBio, 2018, 9, .	4.1	53
32	Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): Results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine, 2017, 35, 375-384.	3.8	52
33	A Recombinant Clumping Factor A-Containing Vaccine Induces Functional Antibodies to Staphylococcus aureus That Are Not Observed after Natural Exposure. Vaccine Journal, 2012, 19, 1641-1650.	3.1	51
34	A fully human monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB) with functional activity in vitro and in vivo. Human Antibodies, 2010, 19, 113-128.	1.5	48
35	Meningococcal serogroup B vaccines: Estimating breadth of coverage. Human Vaccines and Immunotherapeutics, 2017, 13, 255-265.	3.3	48
36	From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Review of Vaccines, 2018, 17, 461-477.	4.4	46

Annaliesa S Anderson

#	Article	IF	CITATIONS
37	Strategies for and advances in the development of <i>Staphylococcus aureus</i> prophylactic vaccines. Expert Review of Vaccines, 2011, 10, 695-708.	4.4	44
38	Preclinical evidence for the potential of a bivalent fHBP vaccine to prevent <i>Neisseria meningitidis</i> Serogroup C Disease. Hum Vaccin, 2011, 7, 68-74.	2.4	43
39	Safety, tolerability, and immunogenicity of a single dose 4-antigen or 3-antigen Staphylococcus aureus vaccine in healthy older adults: Results of a randomised trial. Vaccine, 2017, 35, 385-394.	3.8	43
40	Neisseria meningitidis Serogroup B Vaccine, Bivalent rLP2086, Induces Broad Serum Bactericidal Activity Against Diverse Invasive Disease Strains Including Outbreak Strains. Pediatric Infectious Disease Journal, 2017, 36, 216-223.	2.0	41
41	Evaluation of Approaches to Monitor Staphylococcus aureus Virulence Factor Expression during Human Disease. PLoS ONE, 2015, 10, e0116945.	2.5	41
42	Challenges for the evaluation ofStaphylococcus aureusprotein based vaccines: Monitoring antigenic diversity. Hum Vaccin, 2011, 7, 51-59.	2.4	40
43	Selection and Characterization of Murine Monoclonal Antibodies to <i>Staphylococcus aureus</i> Iron-Regulated Surface Determinant B with Functional Activity In Vitro and In Vivo. Vaccine Journal, 2009, 16, 1095-1104.	3.1	39
44	Covering all the Bases: Preclinical Development of an Effective Staphylococcus aureus Vaccine. Frontiers in Immunology, 2014, 5, 109.	4.8	39
45	Heterogeneous in vivo expression of clumping factor A and capsular polysaccharide by Staphylococcus aureus: Implications for vaccine design. Vaccine, 2009, 27, 3276-3280.	3.8	38
46	A Multi-country Evaluation of Neisseria meningitidis Serogroup B Factor H–Binding Proteins and Implications for Vaccine Coverage in Different Age Groups. Pediatric Infectious Disease Journal, 2013, 32, 1096-1101.	2.0	36
47	Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic. Microbial Genomics, 2016, 2, e000058.	2.0	34
48	Demonstration of the preclinical correlate of protection for Staphylococcus aureus clumping factor A in a murine model of infection. Vaccine, 2015, 33, 5452-5457.	3.8	33
49	Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS ONE, 2019, 14, e0208356.	2.5	33
50	Regulation of Staphylococcus aureus MntC Expression and Its Role in Response to Oxidative Stress. PLoS ONE, 2013, 8, e77874.	2.5	32
51	Accelerated Preclinical Paths to Support Rapid Development of COVID-19 Therapeutics. Cell Host and Microbe, 2020, 28, 638-645.	11.0	30
52	Bactericidal activity of sera from adolescents vaccinated with bivalent rLP2086 against meningococcal serogroup B outbreak strains from France. Vaccine, 2017, 35, 1530-1537.	3.8	29
53	The bivalent factor H binding protein meningococcal serogroup B vaccine elicits bactericidal antibodies against representative non-serogroup B meningococci. Vaccine, 2018, 36, 6867-6874.	3.8	29
54	Comparison of Phenotypic and Genotypic Approaches to Capsule Typing of Neisseria meningitidis by Use of Invasive and Carriage Isolate Collections. Journal of Clinical Microbiology, 2016, 54, 25-34.	3.9	27

#	Article	IF	CITATIONS
55	MntC-Dependent Manganese Transport Is Essential for <i>Staphylococcus aureus</i> Oxidative Stress Resistance and Virulence. MSphere, 2018, 3, .	2.9	27
56	New frontiers in meningococcal vaccines. Expert Review of Vaccines, 2011, 10, 617-634.	4.4	26
57	Adult vaccination. Human Vaccines and Immunotherapeutics, 2015, 11, 150-155.	3.3	25
58	Staphylococcus aureuscapsule type 8 antibodies provide inconsistent efficacy in murine Models of staphylococcal infection. Hum Vaccin, 2009, 5, 254-263.	2.4	24
59	High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC. PLoS Pathogens, 2016, 12, e1005908.	4.7	23
60	Potential impact of the bivalentÂrLP2086Âvaccine on <i>Neisseria meningitidis</i> carriage and invasive serogroup B disease. Human Vaccines and Immunotherapeutics, 2013, 9, 471-479.	3.3	22
61	Peripheral CD4 T follicular cells induced by a conjugated pneumococcal vaccine correlate with enhanced opsonophagocytic antibody responses in younger individuals. Vaccine, 2020, 38, 1778-1786.	3.8	22
62	The impact of human vaccines on bacterial antimicrobial resistance. A review. Environmental Chemistry Letters, 2021, 19, 4031-4062.	16.2	21
63	Human antibody responses to the meningococcal factor H binding protein (LP2086) during invasive disease, colonization and carriage. Vaccine, 2010, 28, 7667-7675.	3.8	18
64	Optimization of Molecular Approaches to Genogroup Neisseria meningitidis Carriage Isolates and Implications for Monitoring the Impact of New Serogroup B Vaccines. PLoS ONE, 2015, 10, e0132140.	2.5	18
65	Performance of a Four-Antigen Staphylococcus aureus Vaccine in Preclinical Models of Invasive S. aureus Disease. Microorganisms, 2021, 9, 177.	3.6	17
66	Two Vaccines for <i>Staphylococcus aureus</i> Induce a B-Cell-Mediated Immune Response. MSphere, 2018, 3, .	2.9	16
67	O-Acetylation is essential for functional antibody generation againstStaphylococcus aureuscapsular polysaccharide. Human Vaccines and Immunotherapeutics, 2018, 14, 81-84.	3.3	15
68	Advances towards licensure of a maternal vaccine for the prevention of invasive group B streptococcus disease in infants: a discussion of different approaches. Human Vaccines and Immunotherapeutics, 2022, 18, 1-12.	3.3	14
69	Anti-infective vaccination in the 21st century—new horizons for personal and public health. Current Opinion in Microbiology, 2015, 27, 96-102.	5.1	13
70	Serologic Assay To Quantify Human Immunoglobulin G Antibodies to the Staphylococcus aureus Iron Surface Determinant B Antigen. Vaccine Journal, 2009, 16, 739-748.	3.1	12
71	Neutrophil killing of Staphylococcus aureus in diabetes, obesity and metabolic syndrome: a prospective cellular surveillance study. Diabetology and Metabolic Syndrome, 2017, 9, 76.	2.7	12
72	Staphylococcus aureus Clumping Factor A Remains a Viable Vaccine Target for Prevention of S. aureus Infection. MBio, 2016, 7, e00225.	4.1	11

#	Article	IF	CITATIONS
73	Safety and immunogenicity of a booster dose of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults: A randomized phase 1 study. Journal of Infection, 2016, 73, 437-454.	3.3	11
74	Persistence of Immune Responses Through 36 Months in Healthy Adults After Vaccination With a Novel Staphylococcus aureus 4-Antigen Vaccine (SA4Ag). Open Forum Infectious Diseases, 2020, 7, ofz532.	0.9	10
75	Selection of diverse strains to assess broad coverage of the bivalent FHbp meningococcal B vaccine. Npj Vaccines, 2020, 5, 8.	6.0	9
76	Safety, tolerability, and immunogenicity of a novel 4-antigen <i>Staphylococcus aureus</i> vaccine (SA4Ag) in healthy Japanese adults. Human Vaccines and Immunotherapeutics, 2018, 14, 1-10.	3.3	8
77	Distribution of Neisseria meningitidis serogroup b (NmB) vaccine antigens in meningococcal disease causing isolates in the United States during 2009–2014, prior to NmB vaccine licensure. Journal of Infection, 2019, 79, 426-434.	3.3	8
78	Immunofluorescence Microscopy for the Detection of Surface Antigens in Methicillin-Resistant Staphylococcus aureus (MRSA). Methods in Molecular Biology, 2014, 1085, 85-95.	0.9	8
79	Differences between culture & non-culture confirmed invasive meningococci with a focus on factor H-binding protein distribution. Journal of Infection, 2016, 73, 63-70.	3.3	7
80	MenB-FHbp Vaccine Protects Against Diverse Meningococcal Strains in Adolescents and Young Adults: Post Hoc Analysis of Two Phase 3 Studies. Infectious Diseases and Therapy, 2020, 9, 641-656.	4.0	6
81	Estimated susceptibility of Canadian meningococcal B isolates to a meningococcal serogroup B vaccine (MenB-FHbp). Vaccine, 2020, 38, 2026-2033.	3.8	6
82	Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microbial Genomics, 2018, 4, .	2.0	4
83	Vaccination against Nosocomial Infections in Elderly Adults. Interdisciplinary Topics in Gerontology and Geriatrics, 2020, 43, 193-217.	2.6	4
84	S. aureus colonization in healthy Australian adults receiving an investigational S. aureus 3-antigen vaccine. Journal of Infection, 2019, 79, 582-592.	3.3	3
85	The Role of Vaccines in Combating Antimicrobial Resistance. Sustainable Agriculture Reviews, 2021, , 347-430.	1.1	3
86	Correlates of protection for meningococcal surface protein vaccines: current approaches for the determination of breadth of coverage. Expert Review of Vaccines, 2022, 21, 753-769.	4.4	2
87	Preclinical Assessment of Glycoconjugate Vaccines. ACS Symposium Series, 2018, , 229-247.	0.5	1
88	Flow Cytometric Assays to Quantify fHbp Expression and Detect Serotype Specific Capsular Polysaccharides on Neisseria meningitidis. Methods in Molecular Biology, 2019, 1969, 217-236.	0.9	1
89	Immunofluorescence Microscopy for the Detection of Surface Antigens in Methicillin Resistant Staphylococcus aureus (MRSA). Methods in Molecular Biology, 2020, 2069, 47-58.	0.9	1
90	Commentary: Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Frontiers in Microbiology, 2020, 11, 538209.	3.5	0

#	Article	IF	CITATIONS
91	Letter to the editor: Importance of serum bactericidal activity for estimating the breadth of protection for new meningococcal vaccines. Eurosurveillance, 2016, 21, .	7.0	0