Xvsheng Qiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5463983/publications.pdf

Version: 2024-02-01

		172457	189892
86	2,807	29	50
papers	citations	h-index	g-index
00	0.0	0.0	0.650
89	89	89	2650
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. Journal of Rare Earths, 2022, 40, 169-192.	4.8	22
2	Fluorescence–Phosphorescence Manipulation and Atom Probe Observation of Fully Inorganic Silver Quantum Clusters: Imitating from and Behaving beyond Organic Hosts. Advanced Optical Materials, 2022, 10, 2101632.	7.3	7
3	Mono-crystalline Ge1-Sn Se micro-sheets with hexagonal morphologies for Visible-NIR photodetectors: Increased carrier concentration, narrowed band gap and improved performances. Journal of Solid State Chemistry, 2022, 310, 123068.	2.9	2
4	The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glassâ€Ceramics with Enhanced Luminescence. Advanced Optical Materials, 2022, 10, .	7.3	15
5	Homogroup Bi/Sb Lattice Substitution to Enhance the Photoelectric Properties of Sb ₂ Se ₃ Crystals. Journal of Physical Chemistry C, 2022, 126, 8913-8921.	3.1	3
6	Micro-spherical MAl2O4: Eu2+ (M=Ca; Sr) phosphors: fast sol-gel route to monodisperse size distribution and monoclinic lattice structure to high efficiency. Journal of Sol-Gel Science and Technology, 2022, 103, 865-875.	2.4	1
7	A sensitive immunoassay based on fluorescence resonance energy transfer from up-converting nanoparticles and graphene oxide for one-step detection of imidacloprid. Food Chemistry, 2021, 335, 127609.	8.2	41
8	Glass-ceramic phosphors for solid state lighting: A review. Ceramics International, 2021, 47, 2963-2980.	4.8	59
9	Selective enrichment of Ln3+ (LnÂ=ÂYb; Er) and Cr3+ into SrF2 and ZnAl2O4 nanocrystals precipitated in fluorosilicate glass-ceramics: A dual mode optical temperature sensing study. Journal of Non-Crystalline Solids, 2021, 552, 120395.	3.1	11
10	A modified random network model for P _{0<fsub>0₃â€"Na₂0â€"Al₂0₃â€"SiO₂glass studied by molecular dynamics simulations. RSC Advances, 2021, 11, 7025-7036.</fsub>}	3.6	15
11	lonic self-diffusion of Na2O–Al2O3–SiO2 glasses from molecular dynamics simulations. Journal of Non-Crystalline Solids, 2020, 527, 119734.	3.1	24
12	Structure, Morphology, and Photoelectric Performances of Te-Sb2Se3 Thin Film Prepared via Magnetron Sputtering. Nanomaterials, 2020, 10, 1358.	4.1	13
13	A one-step mild acid route to fabricate high performance porous anti-reflective optical films from cationic polymeric nanolatex. Scientific Reports, 2020, 10, 14224.	3.3	4
14	Temperature dependent molecular fluorescence of [Agm]n+ quantum clusters stabilized by phosphate glass networks. Physical Chemistry Chemical Physics, 2020, 22, 21307-21316.	2.8	7
15	Ca ²⁺ /Sr ²⁺ /Ba ²⁺ dependent phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass. Journal of the American Ceramic Society, 2020, 103, 5796-5807.	3.8	14
16	Ultrastable Laurionite Spontaneously Encapsulates Reduced-dimensional Lead Halide Perovskites. Nano Letters, 2020, 20, 2316-2325.	9.1	20
17	Visibleâ€NIR Photodetectors Based on Lowâ€Dimensional GeSe Microâ€Crystals: Designed Morphology and Improved Photoresponsivity. ChemPhysChem, 2020, 21, 397-405.	2.1	7
18	Multiâ€phase glassâ€ceramics containing CaF ₂ : Er ³⁺ and ZnAl ₂ O ₄ :Cr ³⁺ nanocrystals for optical temperature sensing. Journal of the American Ceramic Society, 2019, 102, 2472-2481.	3.8	24

#	Article	IF	CITATIONS
19	Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres. Journal of Chemical Thermodynamics, 2019, 128, 119-126.	2.0	11
20	A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society, 2019, 39, 5018-5029.	5.7	28
21	High performance optical temperature sensing <i>via </i> selectively partitioning Cr ⁴⁺ in the residual SiO ₂ -rich phase of glass-ceramics. Physical Chemistry Chemical Physics, 2019, 21, 17047-17053.	2.8	6
22	Structural Origins of BaF 2 /Ba 1 \hat{a} ° x R x F 2 + x /RF 3 Nanocrystals Formation from Phase Separated Fluoroaluminosilicate Glass: A Molecular Dynamic Simulation Study. Advanced Theory and Simulations, 2019, 2, 1900062.	2.8	5
23	The Nitrogen-Hole-Center Electron Transfer Imparts Reduction Ability to Eu Ion in AlN-Containing Phosphate Glasses. Journal of Physical Chemistry C, 2019, 123, 27794-27801.	3.1	3
24	Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb ₂ W ₃ O ₁₂ . Angewandte Chemie - International Edition, 2019, 58, 17255-17259.	13.8	158
25	Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb ₂ W ₃ O ₁₂ . Angewandte Chemie, 2019, 131, 17415-17419.	2.0	5
26	Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering. Advanced Functional Materials, 2019, 29, 1903295.	14.9	59
27	Magnetron sputtered Sb2Se3-based thin films towards high performance quasi-homojunction thin film solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110154.	6.2	32
28	Oneâ€Step Synthesis of Mixed Lanthanide Metal–Organic Framework Films for Sensitive Temperature Mapping. Advanced Optical Materials, 2019, 7, 1900336.	7.3	60
29	Stabilization of Fluorescent [Ag _{<i>m</i>}] ^{<i>n</i>+} Quantum Clusters in Multiphase Inorganic Glass-Ceramics for White LEDs. ACS Applied Nano Materials, 2019, 2, 2854-2863.	5.0	24
30	Structural Origins of RF ₃ /NaRF ₄ Nanocrystal Precipitation from Phase-Separated SiO ₂ â€"Al ₂ O ₃ â€"RF ₃ â€"NaF Glasses: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2019, 123, 3024-3032.	2.6	22
31	Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores. Journal of Materials Chemistry C, 2019, 7, 5155-5162.	5.5	31
32	Phase and morphology evolution of luminescent NaLnF ₄ (Ln = La to Yb) micro-crystals: understanding the ionic radii and surface energy-dependent solution growth mechanism. CrystEngComm, 2019, 21, 6652-6658.	2.6	10
33	Micron-Scale Photodetectors Based on One-Dimensional Single-Crystalline Sb2–xSnxSe3 Microrods: Simultaneously Improving Responsivity and Extending Spectral Response Region. Journal of Physical Chemistry C, 2019, 123, 810-816.	3.1	14
34	Controllable competitive nanocrystallization of La3+-based fluorides in aluminosilicate glasses and optical spectroscopy. Journal of the European Ceramic Society, 2019, 39, 1420-1427.	5.7	22
35	Facile synthesis of monodisperse SrAl ₂ O ₄ :Eu ²⁺ cage-like microspheres with an excellent luminescence quantum yield. Journal of Materials Chemistry C, 2018, 6, 3346-3351.	5.5	12
36	Yb ³⁺ -sensitized upconversion and downshifting luminescence in Nd ³⁺ ions through energy migration. Dalton Transactions, 2018, 47, 8581-8584.	3.3	16

#	Article	IF	CITATIONS
37	Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands. ACS Applied Materials & Diverge 1. (2018), 10, 5959-5966.	8.0	68
38	Luminescence properties and tunable emission of Ag NCs in oxyfluoride glass through REF ₃ (RE = Y, La and Gd) doping. Journal of the American Ceramic Society, 2018, 101, 732-738.	3.8	12
39	Stabilization of divalent Eu ²⁺ in fluorosilicate glass-ceramics <i>via</i> lattice site substitution. RSC Advances, 2018, 8, 34536-34542.	3.6	10
40	A high performance broadband photodetector based on (Sn _x Sb _{1â^'x}) ₂ Se ₃ nanorods with enhanced electrical conductivity. Journal of Materials Chemistry C, 2018, 6, 11078-11085.	5. 5	24
41	Phase separation strategy to facilely form fluorescent [Ag ₂] ⁿ⁺ quantum clusters in boro-alumino-silicate multiphase glasses. Physical Chemistry Chemical Physics, 2018, 20, 23942-23947.	2.8	22
42	Phaseâ€Selective Nanocrystallization of NaLnF ₄ in Aluminosilicate Glass for Random Laser and 940 nm LEDâ€Excitable Upconverted Luminescence. Laser and Photonics Reviews, 2018, 12, 1800030.	8.7	94
43	Enhanced electrical conductivity and photoconductive properties of Sn-doped Sb ₂ Se ₃ crystals. Journal of Materials Chemistry C, 2018, 6, 6465-6470.	5.5	34
44	Facile Synthesis of γâ€In ₂ Se ₃ Nanoflowers toward High Performance Selfâ€Powered Broadband γâ€In ₂ Se ₃ /Si Heterojunction Photodiode. Small, 2017, 13, 1604033.	10.0	64
45	Crystalline Hollow Microrods for Siteâ€Selective Enhancement of Nonlinear Photoluminescence. Angewandte Chemie, 2017, 129, 10519-10523.	2.0	6
46	Crystalline Hollow Microrods for Siteâ€Selective Enhancement of Nonlinear Photoluminescence. Angewandte Chemie - International Edition, 2017, 56, 10383-10387.	13.8	61
47	Stabilization of ultra-small [Ag ₂] ²⁺ and [Ag _m] ⁿ⁺ nano-clusters through negatively charged tetrahedrons in oxyfluoride glass networks: To largely enhance the luminescence quantum yields. Physical Chemistry Chemical Physics, 2017, 19, 22638-22645.	2.8	22
48	Broadband Ce(III)-Sensitized Quantum Cutting in Core–Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application. Journal of Physical Chemistry Letters, 2017, 8, 5099-5104.	4.6	28
49	Innentitelbild: Crystalline Hollow Microrods for Siteâ€Selective Enhancement of Nonlinear Photoluminescence (Angew. Chem. 35/2017). Angewandte Chemie, 2017, 129, 10384-10384.	2.0	O
50	Facile synthesis of monodisperse YAG:Ce ³⁺ microspheres with high quantum yield via an epoxide-driven sol–gel route. Journal of Materials Chemistry C, 2017, 5, 8952-8957.	5. 5	32
51	Dual mode temperature sensing through luminescence lifetimes of F- and O-coordinated Cr ³⁺ sites in fluorosilicate glass-ceramics. RSC Advances, 2017, 7, 52435-52441.	3.6	23
52	Understanding Enhanced Upconversion Luminescence in Oxyfluoride Glass-Ceramics Based on Local Structure Characterizations and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 15384-15391.	3.1	50
53	Shielding Upconversion by Surface Coating: A Study of the Emission Enhancement Factor. ChemPhysChem, 2016, 17, 766-770.	2.1	29
54	High performance hierarchical nanoporous antireflective films by a facile sol–gel process. RSC Advances, 2016, 6, 113911-113918.	3.6	8

#	Article	IF	CITATIONS
55	Optimum Quantum Yield of the Light Emission from 2 to 10 nm Hydrosilylated Silicon Quantum Dots. Particle and Particle Systems Characterization, 2016, 33, 44-52.	2.3	83
56	Preparation of AlN microspheres/UHMWPE composites for insulating thermal conductors. RSC Advances, 2016, 6, 80262-80267.	3.6	29
57	From Phase Separation to Nanocrystallization in Fluorosilicate Glasses: Structural Design of Highly Luminescent Glass-Ceramics. Journal of Physical Chemistry C, 2016, 120, 17726-17732.	3.1	63
58	Amplifying Excitation-Power Sensitivity of Photon Upconversion in a NaYbF ₄ :Ho Nanostructure for Direct Visualization of Electromagnetic Hotspots. Journal of Physical Chemistry Letters, 2016, 7, 4916-4921.	4.6	95
59	Non-bridging oxygen dependent redox and spectroscopic properties of Cu species in phosphosilicate glasses. Journal of Alloys and Compounds, 2016, 664, 331-337.	5.5	16
60	Facile synthesis of hybrid nanorods with the Sb ₂ Se ₃ /AgSbSe ₂ heterojunction structure for high performance photodetectors. Nanoscale, 2016, 8, 2277-2283.	5.6	48
61	Eu2+ promoted formation of molecule-like Ag and enhanced white luminescence of Ag/Eu-codoped oxyfluoride glasses. Journal of Non-Crystalline Solids, 2016, 432, 348-353.	3.1	29
62	Selective adsorption of Zn ²⁺ on surface ion-imprinted polymer. Desalination and Water Treatment, 2016, 57, 15455-15466.	1.0	6
63	Directional Light Emission in a Single NaYF ₄ Microcrystal via Photon Upconversion. Advanced Optical Materials, 2015, 3, 1577-1581.	7.3	45
64	Establishing the Structural Integrity of Core–Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes. Angewandte Chemie - International Edition, 2015, 54, 12788-12790.	13.8	61
65	Facile synthesis of monodisperse aluminum nitride microspheres. Journal of Sol-Gel Science and Technology, 2015, 76, 658-665.	2.4	11
66	Facile synthesis of monodisperse Cu3SbSe4 nanoparticles and thermoelectric performance of Cu3SbSe4 nanoparticle-based materials. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	15
67	Lanthanide-Doped Energy Cascade Nanoparticles: Full Spectrum Emission by Single Wavelength Excitation. Chemistry of Materials, 2015, 27, 3115-3120.	6.7	92
68	Synthesis of monolithic aerogel-like alumina via the accumulation of mesoporous hollow microspheres. Microporous and Mesoporous Materials, 2015, 202, 234-240.	4.4	27
69	Recycling paper mill sludge with modified bentonite. Nordic Pulp and Paper Research Journal, 2014, 29, 533-539.	0.7	2
70	Synthesis of monolithic zirconia with macroporous bicontinuous structure via epoxide-driven sol–gel process accompanied by phase separation. Journal of Sol-Gel Science and Technology, 2014, 69, 1-8.	2.4	8
71	Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass. Journal of Luminescence, 2014, 152, 222-225.	3.1	30
72	Sensitized <scp><scp>Yb³⁺</scp></scp> Luminescence of <scp><scp>Eu³⁺/Yb³⁺</scp></scp> â€Codoped Fluorosilicate Glass Ceramics. Journal of the American Ceramic Society, 2012, 95, 1042-1047.	3.8	9

#	Article	IF	CITATIONS
73	Hydrothermal synthesis and luminescent properties of CexGd1â^'xF3:Ln3+nanocrystals. Nanoscience Methods, 2012, 1, 93-101.	1.0	0
74	Luminescence Properties of Eu2+ and Mn2+ Codoped 50SiO2-17Al2O3-23MgF2-10NaF Glasses and Glass-Ceramics. Journal of the American Ceramic Society, 2011, 94, 1670-1674.	3.8	26
75	Luminescence Properties of Eu ²⁺ â€Doped Glass Ceramics Containing SrF ₂ Nanocrystals. Journal of the American Ceramic Society, 2010, 93, 2684-2688.	3.8	25
76	Eu ²⁺ â€Doped Glass Ceramics Containing BaF ₂ Nanocrystals as a Potential Blue Phosphor for UVâ€LED. Journal of the American Ceramic Society, 2009, 92, 942-944.	3.8	50
77	Luminescence behavior of Ce3+ and Dy3+ codoped oxyfluoride glasses and glass ceramics containing LaF3 nanocrystals. Journal of Applied Physics, 2009, 105, .	2.5	69
78	Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals. Journal of Non-Crystalline Solids, 2008, 354, 3273-3277.	3.1	33
79	Reduction and luminescence of europium ions in glass ceramics containing SrF2 nanocrystals. Journal of Non-Crystalline Solids, 2008, 354, 4691-4694.	3.1	48
80	Luminescence behavior of Er3+ doped glass ceramics containing Sr2RF7 (R=Y,Gd,La) nanocrystals. Journal of Applied Physics, 2008, 104, 043508.	2.5	22
81	Preparation Process and Upconversion Luminescence of Er3+-Doped Glass Ceramics Containing Ba2LaF7Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 5950-5954.	2.6	80
82	Spectroscopic properties of Er3+ doped glass ceramics containing Sr2GdF7 nanocrystals. Applied Physics Letters, 2006, 89, 111919.	3.3	44
83	Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals. Scripta Materialia, 2006, 55, 211-214.	5.2	87
84	Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals. Journal of Applied Physics, 2006, 99, 074302.	2.5	85
85	Luminescence behavior of Er3+ ions in glass–ceramics containing CaF2 nanocrystals. Journal of Non-Crystalline Solids, 2005, 351, 357-363.	3.1	107
86	Up-conversion luminescence and near infrared luminescence of Er3+ in transparent oxyfluoride glass-ceramics. Optical Materials, 2004, 27, 597-603.	3.6	64