
Jian-Ping An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5463817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017, 4, 17023.	2.9	216
2	An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1â€mediated degradation. Plant Biotechnology Journal, 2020, 18, 337-353.	4.1	198
3	EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. Plant Physiology, 2018, 178, 808-823.	2.3	191
4	Apple bZIP transcription factor MdbZIP44 regulates abscisic acidâ€promoted anthocyanin accumulation. Plant, Cell and Environment, 2018, 41, 2678-2692.	2.8	189
5	The ERF transcription factor MdERF38 promotes drought stressâ€induced anthocyanin biosynthesis in apple. Plant Journal, 2020, 101, 573-589.	2.8	181
6	R2R3â€ <scp>MYB</scp> transcription factor Md <scp>MYB</scp> 23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant Journal, 2018, 96, 562-577.	2.8	178
7	Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS Genetics, 2016, 12, e1006273.	1.5	127
8	Md <scp>WRKY</scp> 40 promotes woundingâ€induced anthocyanin biosynthesis in association with Md <scp>MYB</scp> 1 and undergoes Md <scp>BT</scp> 2â€mediated degradation. New Phytologist, 2019, 224, 380-395.	3.5	121
9	The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor. Plant Physiology, 2018, 178, 890-906.	2.3	102
10	Md <scp>BBX</scp> 22 regulates <scp>UV</scp> â€Bâ€induced anthocyanin biosynthesis through regulating the function of Md <scp>HY</scp> 5 and is targeted by Md <scp>BT</scp> 2 for 26S proteasomeâ€mediated degradation. Plant Biotechnology Journal, 2019, 17, 2231-2233.	4.1	102
11	The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry, 2016, 108, 24-31.	2.8	99
12	An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. Journal of Plant Physiology, 2018, 221, 74-80.	1.6	93
13	Apple Bâ€box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZâ€BBX37â€ICE1â€CBF pathway and undergoes MIEL1â€mediated ubiquitination and degradation. New Phytologist, 2021, 229, 2707-2729.	3.5	88
14	An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum, 2018, 164, 279-289.	2.6	80
15	Mdb <scp>HLH</scp> 93, an apple activator regulating leaf senescence, is regulated by <scp>ABA</scp> and Md <scp>BT</scp> 2 in antagonistic ways. New Phytologist, 2019, 222, 735-751.	3.5	76
16	An Apple B-Box Protein MdBBX37 Modulates Anthocyanin Biosynthesis and Hypocotyl Elongation Synergistically with MdMYBs and MdHY5. Plant and Cell Physiology, 2020, 61, 130-143.	1.5	70
17	ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany, 2021, 72, 1460-1472.	2.4	68
18	Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. Journal of Experimental Botany, 2020, 71, 3094-3109.	2.4	64

Jian-Ping An

#	Article	IF	CITATIONS
19	MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple. Journal of Plant Physiology, 2017, 218, 275-281.	1.6	56
20	Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1–TRB1–MYB9 complex. Plant Journal, 2021, 106, 1414-1430.	2.8	49
21	Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant and Cell Physiology, 2017, 58, 1953-1962.	1.5	46
22	Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response. Frontiers in Plant Science, 2016, 7, 1685.	1.7	41
23	Cloning and elucidation of the functional role of apple MdLBD13 in anthocyanin biosynthesis and nitrate assimilation. Plant Cell, Tissue and Organ Culture, 2017, 130, 47-59.	1.2	36
24	BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiology, 2018, 38, 1578-1587.	1.4	34
25	MdABI5 works with its interaction partners to regulate abscisic acidâ€mediated leaf senescence in apple. Plant Journal, 2021, 105, 1566-1581.	2.8	32
26	Apple MdMYC2 reduces aluminum stress tolerance by directly regulating MdERF3 gene. Plant and Soil, 2017, 418, 255-266.	1.8	31
27	Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription. Plant Science, 2018, 276, 181-188.	1.7	30
28	Apple <scp>BT2</scp> protein negatively regulates jasmonic acidâ€triggered leaf senescence by modulating the stability of <scp>MYC2</scp> and <scp>JAZ2</scp> . Plant, Cell and Environment, 2021, 44, 216-233.	2.8	30
29	Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. Journal of Experimental Botany, 2022, 73, 980-997.	2.4	30
30	BTB/TAZ protein MdBT2 integrates multiple hormonal and environmental signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology, 2020, 62, 1643-1646.	4.1	29
31	The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiology and Biochemistry, 2021, 167, 390-399.	2.8	28
32	Apple RING finger E3 ubiquitin ligase MdMIEL1 negatively regulates salt and oxidative stresses tolerance. Journal of Plant Biology, 2017, 60, 137-145.	0.9	26
33	The apple C2H2-type zinc finger transcription factor MdZAT10 positively regulates JA-induced leaf senescence by interacting with MdBT2. Horticulture Research, 2021, 8, 159.	2.9	26
34	Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis. Biochemical and Biophysical Research Communications, 2017, 483, 1-9.	1.0	19
35	Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology, 2022, 188, 2342-2363.	2.3	15
36	Genome-wide analysis and identification of the SMXL gene family in apple (Malus × domestica). Tree Genetics and Genomes, 2018, 14, 1.	0.6	12

Jian-Ping An

#	Article	IF	CITATIONS
37	Apple <scp>SINA E3</scp> ligase <scp>MdSINA3</scp> negatively mediates <scp>JA</scp> â€ŧriggered leaf senescence by ubiquitinating and degrading the <scp>MdBBX37</scp> protein. Plant Journal, 2022, 111, 457-472.	2.8	12
38	Phosphate regulates malate/citrate-mediated iron uptake and transport in apple. Plant Science, 2020, 297, 110526.	1.7	8
39	MdBZR1 regulates ABA response by modulating the expression of MdABI5 in apple. Plant Cell Reports, 2021, 40, 1127-1139.	2.8	4
40	Overexpression of MdPHR1 Enhanced Tolerance to Phosphorus Deficiency by Increasing MdPAP10 Transcription in Apple (Malus ×  Domestica). Journal of Plant Growth Regulation, 2021, 40, 1753-1763.	2.8	3
41	Molecular cloning and functional characterization of the CEP RECEPTOR 1 gene MdCEPR1 of Apple (Malus × domestica). Plant Cell, Tissue and Organ Culture, 2020, 140, 539-550.	1.2	2