Rafael Maya-Yescas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5463710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic simulation of control systems for bioethanol reactive dehydration: Conventional and intensified case studies. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108238.	3.6	10
2	Mass balance of the tribofilm in lubricated systems. Tribology International, 2021, 155, 106757.	5.9	2
3	The use of inorganic Al-HMS as a support for NiMoW sulfide HDS catalysts. Inorganica Chimica Acta, 2021, 524, 120450.	2.4	5
4	Delumping Strategy to Infer Lubrication Reaction Pathways in Internal Combustion Engines. International Journal of Chemical Reactor Engineering, 2020, 18, .	1.1	1
5	Extract of Ellagitannins starting with Strawberries (Fragaria sp.) and Blackberries (Rubus sp.). Food Science and Technology, 2020, 40, 430-439.	1.7	7
6	Preface: Special issue dedicated to the International Energy Conference, IEC-2019, Morelia, México "towards energy sustainability with a social approach― International Journal of Chemical Reactor Engineering, 2020, 18, .	1.1	0
7	Trimetallic RuxMoNi Catalysts Supported on SBA-15 for the Hydrodesulfurization of Dibenzothiophene. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	1
8	Mathematical modeling of mass transport in partitioning bioreactors. Advances in Chemical Engineering, 2019, , 53-74.	0.9	1
9	Mars van Krevelen Mechanism for the Selective Partial Oxidation of Ethane. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	4
10	Modelling Laboratory Fischer-Tropsch Synthesis Using Cobalt Catalysts. International Journal of Chemical Reactor Engineering, 2018, 16, .	1.1	0
11	Enhancement of dibenzothiophene hydrodesulphurization via hydrogenation route on NiMoW catalyst supported on HMS modified with Ti. Catalysis Today, 2018, 305, 65-74.	4.4	10
12	Polyphenolic content and bactericidal effect of Mexican Citrus limetta and Citrus reticulata. Journal of Food Science and Technology, 2017, 54, 531-537.	2.8	19
13	Use of an annular nonâ€sleeve photoreactor for photocatalytic dye degradation: Study of temperature and light intensity effects. Environmental Progress and Sustainable Energy, 2017, 36, 1083-1088.	2.3	2
14	Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: Reaction study for biodiesel synthesis. Catalysis Today, 2017, 282, 195-203.	4.4	31
15	Thermodynamic Analysis of Ethanol Synthesis from Glycerol by Two-Step Reactor Sequence. International Journal of Chemical Reactor Engineering, 2016, 14, 1169-1176.	1.1	2
16	Dynamics, Controllability, and Control of Intensified Processes. , 2016, , 293-325.		2
17	Reactions analysis during the synthesis of pseudo-boehmite as precursor of gamma-alumina. Catalysis Today, 2016, 271, 207-212.	4.4	16
18	Simulation of Syngas Production from Lignin Using Guaiacol as a Model Compound. Energies, 2015, 8, 6705-6714.	3.1	15

RAFAEL MAYA-YESCAS

#	Article	IF	CITATIONS
19	Differences between Fisher–Tropsch synthesis of either gasoline or diesel based on changes of entropy and free energy. Fuel, 2015, 149, 184-190.	6.4	11
20	Simultaneous estimation of kinetics and catalysts activity during cracking of 1,3,5-tri-isopropyl benzene on FCC catalyst. Catalysis Today, 2014, 220-222, 178-185.	4.4	9
21	The use of a natural Mexican zeolite as support of NiMoW sulphide hydrotreating catalysts. Catalysis Today, 2014, 220-222, 301-309.	4.4	9
22	Catalyst activity decay due to pore blockage during catalytic cracking of hydrocarbons. Fuel, 2013, 110, 89-98.	6.4	28
23	Bifurcation analysis of continuous aerobic nonisothermal bioreactor for wastewater treatment. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 24-29.	0.4	3
24	Dynamic behavior analysis of carboxymethylcellulose hydrolysis in a chemostat. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 132-136.	0.4	3
25	Synthesis, characterization and catalytic activity during hydrodesulphurization of dibenzothiophene of NiMoW catalysts supported on AlTi mixed oxides modified with MgO. Fuel, 2012, 100, 57-65.	6.4	16
26	Novel [Ce1â^'xLaxO2, La2â^'yCeyO3]/Bi2Mo0.9W0.1O6 catalysts for CO oxidation at low temperature. Catalysis Science and Technology, 2012, 2, 639.	4.1	3
27	Optimization and Controllability Analysis of Thermally Coupled Reactive Distillation Arrangements with Minimum Use of Reboilers. Industrial & Engineering Chemistry Research, 2012, 51, 5856-5865.	3.7	18
28	Proposition of a Minimum Set of Independent Chemical Reactions To Model Gas-Phase Composition during Gasification of Complex Cokes. Energy & amp; Fuels, 2011, 25, 4070-4076.	5.1	1
29	Improving Accuracy in the Estimation of Kinetic Frequency Factors from Laboratory Data To Model Industrial Catalytic Cracking Risers. Industrial & Engineering Chemistry Research, 2011, 50, 2736-2745.	3.7	9
30	The fluidized-bed catalytic cracking unit building its future environment. Fuel, 2011, 90, 3531-3541.	6.4	50
31	Modelling Catalyst Deactivation by External Coke Deposition during Fluid Catalytic Cracking. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	5
32	Axial Variation of Mass Transfer Volumetric Coefficients in Bubble Column Bioreactors. Chemical Product and Process Modeling, 2010, 5, .	0.9	2
33	DESIGN STUDY OF THE CONTROL OF A REACTIVE THERMALLY COUPLED DISTILLATION SEQUENCE FOR THE ESTERIFICATION OF FATTY ORGANIC ACIDS. Chemical Engineering Communications, 2010, 198, 1-18.	2.6	19
34	Temperature Regulation via PI High-Order Sliding-Mode Controller Design: Application to a Class of Chemical Reactor. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	3
35	Design and Optimization of Thermally Coupled Distillation Sequences for Purification of Bioethanol. Computer Aided Chemical Engineering, 2009, , 957-962.	0.5	5
36	Tracking Catalyst Activity during Fluidized-bed Catalytic Cracking. Industrial & Engineering Chemistry Research, 2009, 48, 1220-1227.	3.7	13

RAFAEL MAYA-YESCAS

#	Article	IF	CITATIONS
37	Energyâ€efficient complex distillation sequences: Control properties. Canadian Journal of Chemical Engineering, 2008, 86, 249-259.	1.7	7
38	Inverse dynamics: a problem on transient controllability for industrial plants. Inverse Problems in Science and Engineering, 2008, 16, 811-827.	1.2	3
39	Modelling Tribological Performance of Bodymaker Lubricants. Chemical Product and Process Modeling, 2008, 3, .	0.9	Ο
40	Modelling of Biofilm Reactors for Degradation of Water Pollutants. International Journal of Chemical Reactor Engineering, 2007, 5, .	1.1	0
41	CONTROL AND ENERGY SAVINGS OF THE PETLYUK DISTILLATION SYSTEM. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 195-200.	0.4	2
42	Open loop response to changes of coke-precursors during fluidised-bed catalytic cracking. Fuel, 2007, 86, 1282-1289.	6.4	4
43	Scaling-up of instantaneous data of complex kinetics. Fuel, 2007, 86, 1278-1281.	6.4	7
44	Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions. Thin Solid Films, 2006, 496, 463-468.	1.8	2
45	Robust Temperature Stabilization for Fluid Catalytic Cracking Units Using Extended Kalman-Type Estimators. Chemical Product and Process Modeling, 2006, 1, .	0.9	0
46	State estimation for nonlinear systems under model uncertainties: a class of sliding-mode observers. Journal of Process Control, 2005, 15, 363-370.	3.3	46
47	Impact of Production Objectives on Adiabatic FCC Regenerator Control. Petroleum Science and Technology, 2004, 22, 31-43.	1.5	3
48	Feedback Regulation of Temperature in FCC Regenerator Reactors. Petroleum Science and Technology, 2004, 22, 201-218.	1.5	5
49	Towards modelling production of clean fuels: sour gas formation in catalytic cracking. Journal of Chemical Technology and Biotechnology, 2004, 79, 1113-1118.	3.2	9
50	Effect of hydrotreating FCC feedstock on product distribution. Catalysis Today, 2004, 98, 273-280.	4.4	21
51	Temperature control in catalytic cracking reactors via a robust PID controller. Journal of Process Control, 2002, 12, 695-705.	3.3	42
52	Approach to the analysis of the dynamics of industrial FCC units. Journal of Process Control, 1998, 8, 89-100.	3.3	13
53	Comparison of two dynamic models for FCC units. Catalysis Today, 1997, 38, 137-147.	4.4	4
54	Antioxidant Capacity and Food Pathogenic Bacteria Inhibition of Citrus limetta and Citrus reticulata. , 0, , .		1

4