
Ilia Voskoboinik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5463444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The pore conformation of lymphocyte perforin. Science Advances, 2022, 8, eabk3147.	4.7	10
2	ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science, 2022, 376, 377-382.	6.0	47
3	Lipid specificity of the immune effector perforin. Faraday Discussions, 2021, 232, 236-255.	1.6	7
4	Words of Advice: choosing the right lab for your postâ€doctoral fellowship. FEBS Journal, 2021, 288, 1734-1741.	2.2	0
5	Dilemmas in the diagnosis and pathogenesis of atypical lateâ€onset familial haemophagocytic lymphohistiocytosis. Clinical and Translational Immunology, 2021, 10, e1320.	1.7	0
6	Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nature Communications, 2021, 12, 4270.	5.8	37
7	Differential effects of BTK inhibitors ibrutinib and zanubrutinib on NK-cell effector function in patients with mantle cell lymphoma. Haematologica, 2020, 105, e76-e79.	1.7	37
8	Recovery of natural killer cell cytotoxicity in a A91V perforinhomozygous patient following severe haemophagocytic lymphohistiocytosis. British Journal of Haematology, 2020, 190, 458-461.	1.2	2
9	Differential cleavage of viral polypeptides by allotypic variants of granzyme B skews immunity to mouse cytomegalovirus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140457.	1.1	2
10	Safety Profile of a Multi-Antigenic DNA Vaccine Against Hepatitis C Virus. Vaccines, 2020, 8, 53.	2.1	5
11	Prevalence and disease predisposition of p.A91V perforin in an aged population of European ancestry. Blood, 2020, 135, 582-584.	0.6	6
12	The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nature Communications, 2019, 10, 4288.	5.8	65
13	Distinguishing perforin-mediated lysis and granzyme-dependent apoptosis. Methods in Enzymology, 2019, 629, 291-306.	0.4	7
14	Lipid order and charge protect killer T cells from accidental death. Nature Communications, 2019, 10, 5396.	5.8	56
15	Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunology Research, 2019, 7, 183-192.	1.6	68
16	Neonatal Cytomegalovirus Palatal Ulceration and Bocavirus Pneumonitis Associated With a Defect of Lymphocyte Cytotoxicity Caused by Mutations in <i>UNC13D</i> . Journal of the Pediatric Infectious Diseases Society, 2019, 8, 73-76.	0.6	0
17	Perforin proteostasis is regulated through its C2 domain: supra-physiological cell death mediated by T431D-perforin. Cell Death and Differentiation, 2018, 25, 1517-1529.	5.0	4
18	Adaptive reprogramming of NK cells in X-linked lymphoproliferative syndrome. Blood, 2018, 131, 699-702.	0.6	5

#	Article	IF	CITATIONS
19	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	5.6	244
20	Bi-Allelic Mutations in STXBP2 Reveal a Complementary Role for STXBP1 in Cytotoxic Lymphocyte Killing. Frontiers in Immunology, 2018, 9, 529.	2.2	16
21	Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 2017, 12, 467-473.	15.6	88
22	Cytolytic DNA vaccine encoding lytic perforin augments the maturation of- and antigen presentation by- dendritic cells in a time-dependent manner. Scientific Reports, 2017, 7, 8530.	1.6	9
23	Perforin—A key (shaped) weapon in the immunological arsenal. Seminars in Cell and Developmental Biology, 2017, 72, 117-123.	2.3	24
24	Regulation of perforin activation and preâ€synaptic toxicity through Câ€ŧerminal glycosylation. EMBO Reports, 2017, 18, 1775-1785.	2.0	27
25	CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 2017, 549, 101-105.	13.7	624
26	Late-Onset Non-HLH Presentations of Growth Arrest, Inflammatory Arachnoiditis, and Severe Infectious Mononucleosis, in Siblings with Hypomorphic Defects in UNC13D. Frontiers in Immunology, 2017, 8, 944.	2.2	14
27	Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity. FEBS Journal, 2016, 283, 947-961.	2.2	31
28	Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. OncoImmunology, 2016, 5, e1196308.	2.1	41
29	Missense mutations in the perforin (<i>PRF1</i>) gene as a cause of hereditary cancer predisposition. Oncolmmunology, 2016, 5, e1179415.	2.1	18
30	Intradermal delivery of DNA encoding HCV NS3 and perforin elicits robust cell-mediated immunity in mice and pigs. Gene Therapy, 2016, 23, 26-37.	2.3	30
31	Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. Journal of Experimental Medicine, 2015, 212, 307-317.	4.2	188
32	A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. Journal of Virology, 2015, 89, 7991-8002.	1.5	31
33	Perforin and granzymes: function, dysfunction and human pathology. Nature Reviews Immunology, 2015, 15, 388-400.	10.6	858
34	Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunology and Cell Biology, 2015, 93, 575-580.	1.0	42
35	Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin. PLoS Biology, 2015, 13, e1002049.	2.6	114
36	Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 25213-25226.	1.6	25

#	Article	IF	CITATIONS
37	B cellâ€derived circulating granzyme B is a feature of acute infectious mononucleosis. Clinical and Translational Immunology, 2015, 4, e38.	1.7	15
38	Perforin-dependent cytotoxicity: â€~Kiss of death' or prolonged embrace with darker elocation-idnseque11es?. Oncolmmunology, 2015, 4, e1036215.	2.1	6
39	A Method for Detecting Intracellular Perforin in Mouse Lymphocytes. Journal of Immunology, 2014, 193, 5744-5750.	0.4	9
40	Familial haemophagocytic lymphohistiocytosis: <scp>A</scp> ustralian experience and perspectives. Internal Medicine Journal, 2014, 44, 826-827.	0.5	0
41	Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin. Journal of Medicinal Chemistry, 2013, 56, 9542-9555.	2.9	30
42	Rapid and Unidirectional Perforin Pore Delivery at the Cytotoxic Immune Synapse. Journal of Immunology, 2013, 191, 2328-2334.	0.4	72
43	Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood, 2013, 121, 2659-2668.	0.6	208
44	Deciphering the syntax of cytotoxic lymphocyte degranulation. European Journal of Immunology, 2013, 43, 46-49.	1.6	2
45	Mouse granzyme A induces a novel death with writhing morphology that is mechanistically distinct from granzyme B-induced apoptosis. Cell Death and Differentiation, 2013, 20, 1183-1193.	5.0	50
46	Defining the interaction of perforin with calcium and the phospholipid membrane. Biochemical Journal, 2013, 456, 323-335.	1.7	16
47	Perforinopathy: A Spectrum of Human Immune Disease Caused by Defective Perforin Delivery or Function. Frontiers in Immunology, 2013, 4, 441.	2.2	58
48	Human perforin mutations and susceptibility to multiple primary cancers. Oncolmmunology, 2013, 2, e24185.	2.1	57
49	Surprisingly variable "dangers, toils, and snares―faced by humans and mice. Blood, 2013, 121, 568-570.	0.6	0
50	Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends in Immunology, 2012, 33, 406-412.	2.9	71
51	Fatal immune dysregulation due to a gain of glycosylation mutation in lymphocyte perforin. Blood, 2012, 119, 1713-1716.	0.6	20
52	Protection from Endogenous Perforin: Glycans and the C Terminus Regulate Exocytic Trafficking in Cytotoxic Lymphocytes. Immunity, 2011, 34, 879-892.	6.6	63
53	Molecular study of the perforin gene in familial hematological malignancies. Hereditary Cancer in Clinical Practice, 2011, 9, 9.	0.6	13
54	Structure/function analysis of lymphocyte perforin: role as an extrinsic tumour suppressor. Pathology, 2010, 42, S45-S46.	0.3	0

Ilia Voskoboinik

#	Article	IF	CITATIONS
55	The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 2010, 468, 447-451.	13.7	364
56	Perforin deficiency and susceptibility to cancer. Cell Death and Differentiation, 2010, 17, 607-615.	5.0	61
57	Perforin: structure, function, and role in human immunopathology. Immunological Reviews, 2010, 235, 35-54.	2.8	171
58	The structure and function of mammalian membrane-attack complex/perforin-like proteins. Tissue Antigens, 2010, 76, 341-351.	1.0	63
59	The battlefield of perforin/granzyme cell death pathways. Journal of Leukocyte Biology, 2010, 87, 237-243.	1.5	67
60	The Molecular Basis for Perforin Oligomerization and Transmembrane Pore Assembly. Immunity, 2009, 30, 684-695.	6.6	123
61	Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9809-9814.	3.3	114
62	The MACPF/CDC family of pore-forming toxins. Cellular Microbiology, 2008, 10, 1765-1774.	1.1	250
63	Measuring cell death mediated by cytotoxic lymphocytes or their granule effector molecules. Methods, 2008, 44, 241-249.	1.9	22
64	Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A). Biochemical Journal, 2007, 401, 569-579.	1.7	37
65	Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood, 2007, 110, 1184-1190.	0.6	82
66	The complex issue of regulating perforin expression. Trends in Immunology, 2007, 28, 243-245.	2.9	8
67	A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science, 2007, 317, 1548-1551.	6.0	261
68	Apoptosis induced by the lymphocyte effector molecule perforin. Current Opinion in Immunology, 2007, 19, 339-347.	2.4	123
69	Infective, Neoplastic, and Homeostatic Sequelae of the Loss of Perforin Function in Humans. Advances in Experimental Medicine and Biology, 2007, 601, 235-242.	0.8	10
70	Addressing the mysteries of perforin function. Immunology and Cell Biology, 2006, 84, 66-71.	1.0	43
71	Perforin-mediated target-cell death and immune homeostasis. Nature Reviews Immunology, 2006, 6, 940-952.	10.6	494
72	A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood, 2005, 105, 4700-4706.	0.6	92

#	Article	IF	CITATIONS
73	Immune surveillance of lymphoma in humans?. Blood, 2005, 105, 4159-4160.	0.6	2
74	Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through Its C2 Domain. Journal of Biological Chemistry, 2005, 280, 8426-8434.	1.6	131
75	The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene. Journal of Experimental Medicine, 2004, 200, 811-816.	4.2	67
76	P-Type Pumps: Copper Pump. , 2004, , 561-564.		0
77	Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool. Biochemical Journal, 2004, 378, 1031-1037.	1.7	74
78	Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochemical and Biophysical Research Communications, 2003, 301, 488-494.	1.0	23
79	Protein kinase-dependent phosphorylation of the Menkes copper P-type ATPase. Biochemical and Biophysical Research Communications, 2003, 303, 337-342.	1.0	29
80	Copper-regulated Trafficking of the Menkes Disease Copper ATPase Is Associated with Formation of a Phosphorylated Catalytic Intermediate. Journal of Biological Chemistry, 2002, 277, 46736-46742.	1.6	113
81	Understanding the mechanism and function of copper P-type ATPases. Advances in Protein Chemistry, 2002, 60, 123-150.	4.4	31
82	Menkes copper-translocating P-type ATPase (ATP7A): biochemical and cell biology properties, and role in Menkes disease. Journal of Bioenergetics and Biomembranes, 2002, 34, 363-371.	1.0	70
83	Functional Studies on the Wilson Copper P-Type ATPase and Toxic Milk Mouse Mutant. Biochemical and Biophysical Research Communications, 2001, 281, 966-970.	1.0	73
84	The Regulation of Catalytic Activity of the Menkes Copper-translocating P-type ATPase. Journal of Biological Chemistry, 2001, 276, 28620-28627.	1.6	111
85	Functional Analysis of the N-terminal CXXC Metal-binding Motifs in the Human Menkes Copper-transporting P-type ATPase Expressed in Cultured Mammalian Cells. Journal of Biological Chemistry, 1999, 274, 22008-22012.	1.6	107
86	Molecular Mechanisms of Copper Homeostasis. Biochemical and Biophysical Research Communications, 1999, 261, 225-232.	1.0	224
87	Effects of Diol Epoxide Adducts on Binding of Different Transcription Factors to DNA. Polycyclic Aromatic Compounds, 1999, 17, 33-42.	1.4	1
88	ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Letters, 1998, 435, 178-182.	1.3	65
89	Ascorbate and glutathione homeostasis in vascular smooth muscle cells: cooperation with endothelial cells. American Journal of Physiology - Cell Physiology, 1998, 275, C1031-C1039.	2.1	37
90	Peroxisome proliferator nafenopin potentiated cytotoxicity and genotoxicity of cyclophosphamide in the liver and bone marrow cells. Chemico-Biological Interactions, 1997, 105, 81-97.	1.7	3

#	Article	IF	CITATIONS
91	Peroxisome proliferators increase the formation of BPDE-DNA adducts in isolated rat hepatocytes. Toxicology, 1997, 122, 81-91.	2.0	9
92	Differential effect of peroxisome proliferators on rat glutathione S-transferase isoenzymes. Toxicology Letters, 1996, 87, 147-155.	0.4	17
93	Effect of peroxisome proliferator nafenopin on the cytotoxicity of dihaloalkanes in isolated rat hepatocytes. Toxicology in Vitro, 1996, 10, 577-584.	1.1	0
94	Cytotoxic Granules House Potent Proapoptotic Toxins Critical for Antiviral Responses and Immune Homeostasis. , 0, , 106-122.		0