Akin Akturk

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5463126/publications.pdf
Version: 2024-02-01

Energy Dependence of Atmospheric Neutron-Induced Failures in Silicon Carbide Power Devices. IEEE
Transactions on Nuclear Science, 2022, 69, 900-907.

Investigation of Terrestrial Neutron Induced Failure Rates in Silicon Carbide JFET Based Cascode FETs., 2022, ,.

Predicting Cosmic Ray-Induced Failures in Silicon Carbide Power Devices. IEEE Transactions on Nuclear Science, 2019, 66, 1828-1832.

4 Reliability studies of SiC vertical power MOSFETs. , 2018, , .
43

5 Terrestrial Neutron-Induced Failures in Silicon Carbide Power MOSFETs and Diodes. IEEE Transactions on Nuclear Science, 2018, 65, 1248-1254.
$2.0 \quad 39$

Single Event Effects in Si and SiC Power MOSFETs Due to Terrestrial Neutrons. IEEE Transactions on
Nuclear Science, 2017, 64, 529-535.

Mechanisms of Nitrogen Incorporation at $4 \mathrm{H}-\mathrm{SiC} / \mathrm{SiO}<$ sub $>2</$ sub $>$ Interface during Nitric Oxide
$7 \quad \begin{aligned} & \text { Mechanisms of Nitrogen Incorporation at 4H-SiC/SiO₂ Interface during Nit } \\ & \text { Passivation â } €^{\prime \prime} \text { A First Principles Study. Materials Science Forum, 2016, 858, 465-468. }\end{aligned}$
0.3

Structure, bonding, and passivation of single carbon-related oxide hole traps near $4 \mathrm{H}-\mathrm{SiC} / \mathrm{SiO} 2$
interfaces. Journal of Applied Physics, 2014, 116, .
2.5

26

9 Effects of carbon-related oxide defects on the reliability of 4H-SiC MOSFETs. , 2014, , .
7

10 Identification and quantification of $4 \mathrm{H}-\mathrm{SiC}(0001) / \mathrm{SiO}<i n f>2</ \mathrm{inf}>$ interface defects by combining density functional and device simulations. , 2013, , .

11 The effect of defects and their passivation on the density of states of the
$11 \quad 4 \mathrm{H}$-silicon-carbide/silicon-dioxide interface. Journal of Applied Physics, 2013, 113, 053703.
12 Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs. IEEE Transactions on Nuclear Science, 2012, 59, 3258-3264.
2.0

105

The effect of different passivations on near interface trap density of 4H-SiC/SiO\&/t;inf\>2\&|t;/inf\> structures. , 2011, , .

Density functional theory based simulation of carrier transport in silicon carbide and silicon carbide-silicon dioxide interfaces. , 2011, , .
o

Statistical vulnerability analysis to study intra-chip coupling of high power microwave signals. , 2011,
,.

Nonlinear behavior of electrostatic discharge protection structures under high-power microwave
excitation: Modeling and simulation. , 2011, , .

Compact and Distributed Modeling of Cryogenic Bulk MOSFET Operation. IEEE Transactions on
$17 \quad$ Compact and Distributed Modeling of C
3.0

39

Compact modeling of $0.3511 / 4 \mathrm{~m}$ SOI CMOS technology node for 4 K DC operation using Verilog-A.
Microelectronic Engineering, 2010, 87, 2518-2524.
Characterization of Single-Photon Avalanche Diodes in a $0.5 \$$ mu\$m Standard CMOS Processâ€"Part 1:
Perimeter Breakdown Suppression. IEEE Sensors Journal, 2010, 10, 1682-1690.

$20 \quad$| Impact lonization and Freeze-Out Model for Simulation of Low Gate Bias Kink Effect in SOI-MOSFETs |
| :--- |
| Operating at Liquid He Temperature. , 2009, , . |

21 Self-consistent thermal and electrical analysis of silicon carbide power DMOSFET heating and
cooling. , 2009, ,.

22 Effect of random surface charge distribution on transport in 4H-SiC MOSFETs. , 2009, , . 1
23 Modeling of perimeter-gated silicon avalanche diodes fabricated in a standard single-well CMOS
process., 2009, , .
Controlled on-chip heat transfer for directed heating and temperature reduction. Solid-State
Electronics, 2009, 53, 590-598.
25 High field density-functional-theory based Monte Carlo: 4H-SiC impact ionization and velocity saturation. Journal of Applied Physics, 2009, 105, .

Modeling the Effect of Conduction Band Density of States on Interface Trap Occupation and Its
Influence on 4H-SiC MOSFET Performance. , 2009, , .

Design and testing of a self-powered 3D integrated SOI CMOS system. Microelectronic Engineering,
3.0

34
0

29 Unusually strong temperature dependence of graphene electron mobility. , 2008, , .

Numerical modeling of a deoxyribonucleic acid microassay: Carbon nanotube thin film transistor sensor. , 2008, , .

0
30 sensor. , 2008, , .

Comparison of $4 \mathrm{H}-\mathrm{SiC}$ impact ionization models using experiments and self-consistent simulations.
31 Journal of Applied Physics, 2008, 104, 026101.
Journal of Applied Physics, 2008, 104, 026101.

32 Effects of quantum confinement on interface trap occupation in 4H-SiC MOSFETs. , 2008, , .
4

Single-Walled Zig-Zag Carbon Nanotube Steady-State Transport Characteristics. Journal of
Computational and Theoretical Nanoscience, 2008, 5, 1138-1144.

Terahertz Current Oscillations in Single-Walled Zigzag Carbon Nanotubes. Physical Review Letters, 2007, 98, 166803.

Electron Transport and Velocity Oscillations in a Carbon Nanotube. IEEE Nanotechnology Magazine,
$2007,6,469-474$.
2.0

66

39 Device Performance and Package Induced Self Heating Effects At Cryogenic Temperatures. , 2006, , . 4

Mixed-mode temperature modeling of full-chip based on individual non-isothermal device operations.	1.4

41	Quantum Modeling and Proposed Designs of CNT-Embedded Nanoscale MOSFETs. IEEE Transactions on Electron Devices, 2005, 52, 577-584.	3.0
42	Self-Consistent Modeling of Heating and MOSFET Performance in 3-D Integrated Circuits. IEEE Transactions on Electron Devices, 2005, 52, 2395-2403.	3.0

43 Low-Field Transport Model for Semiconducting Carbon Nanotubes. , 2005, , 1
Coupled Simulation of Device Performance and Heating of Vertically Stacked Three-Dimensional Integrated Circuits. , 2005, , 8
45 Device Behavior Modeling for Carbon Nanotube Silicon-On-Insulator MOSFETs. , 2005, , 0Increased CMOS inverter switching speed with asymmetrical doping. Solid-State Electronics, 2003, 47,185-192.
47 Coupled modeling of time-dependent full-chip heating and quantum non-isothermal device operation., 2003, , .6
Faster CMOS inverter switching obtained with channel engineered asymmetrical halo implanted4MOSFETs. , 0, , .
\square
49 Mixed-mode simulation of non-isothermal quantum device operation and full-chip heating. , 0, , .2
50 Electron mobility of a semiconducting carbon nanotube. , 0, , 3
Modeling the enhancement of nanoscale MOSFETs by embedding carbon nanotubes in the channel. , 0, ,4

