Antonio Cigliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5462633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair. Cell, 2011, 146, 67-79.	28.9	700
2	Activation of β-Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	1.3	249
3	Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut, 2020, 69, 177-186.	12.1	121
4	A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis, 2009, 203, 112-118.	0.8	120
5	A functional mammalian target of rapamycin complex 1 signaling is indispensable for câ€Mycâ€driven hepatocarcinogenesis. Hepatology, 2017, 66, 167-181.	7.3	119
6	Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. Journal of Hepatology, 2016, 64, 333-341.	3.7	115
7	Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Scientific Reports, 2016, 6, 20484.	3.3	100
8	Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: Implications for the treatment of human liver cancer. Cell Cycle, 2013, 12, 1999-2010.	2.6	82
9	Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology, 2016, 63, 1900-1913.	7.3	82
10	TGF-β as Multifaceted Orchestrator in HCC Progression: Signaling, EMT, Immune Microenvironment, and Novel Therapeutic Perspectives. Seminars in Liver Disease, 2019, 39, 053-069.	3.6	78
11	Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. Journal of Hepatology, 2017, 67, 1194-1203.	3.7	77
12	The mTORC2â€Akt1 Cascade Is Crucial for câ€Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology, 2019, 70, 1600-1613.	7.3	70
13	4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and Nâ€Ras protoâ€oncogenes in mice. Hepatology, 2015, 61, 200-213.	7.3	63
14	Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget, 2015, 6, 10102-10115.	1.8	61
15	Both <i>de novo</i> synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver International, 2017, 37, 80-89.	3.9	60
16	Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut, 2021, 70, 1746-1757.	12.1	60
17	Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2019, 25, 403-413.	7.0	56
18	PI3K/AKT/mTORâ€dependent stabilization of oncogenic farâ€upstream element binding proteins in hepatocellular carcinoma cells. Hepatology, 2016, 63, 813-826.	7.3	52

ANTONIO CIGLIANO

#	Article	IF	CITATIONS
19	Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium. Biochemistry Research International, 2012, 2012, 1-10.	3.3	51
20	Inactivation of Spry2 accelerates AKT-driven hepatocarcinogenesis via activation of MAPK and PKM2 pathways. Journal of Hepatology, 2012, 57, 577-583.	3.7	45
21	Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle, 2017, 16, 499-507.	2.6	45
22	Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. Journal of Hepatology, 2019, 71, 742-752.	3.7	44
23	Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Frontiers in Oncology, 2019, 9, 1412.	2.8	44
24	PI3K/AKT/mTOR pathway plays a major pathogenetic role in glycogen accumulation and tumor development in renal distal tubules of rats and men. Oncotarget, 2015, 6, 13036-13048.	1.8	42
25	Loss of Pten synergizes with c-Met to promote hepatocellular carcinoma development via mTORC2 pathway. Experimental and Molecular Medicine, 2018, 50, e417-e417.	7.7	39
26	Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Cell Death and Differentiation, 2020, 27, 2330-2343.	11.2	39
27	Plasma levels of C-reactive protein, leptin and glycosaminoglycans during spontaneous menstrual cycle: differences between ovulatory and anovulatory cycles. Archives of Gynecology and Obstetrics, 2010, 282, 207-213.	1.7	35
28	Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS ONE, 2017, 12, e0184068.	2.5	35
29	Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. American Journal of Pathology, 2018, 188, 995-1006.	3.8	29
30	Jagged 1 is a major Notch ligand along cholangiocarcinoma development in mice and humans. Oncogenesis, 2016, 5, e274-e274.	4.9	28
31	TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. Journal of Hepatology, 2022, 76, 123-134.	3.7	28
32	Role of the Notch signaling in cholangiocarcinoma. Expert Opinion on Therapeutic Targets, 2017, 21, 471-483.	3.4	27
33	SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget, 2015, 6, 2222-2234.	1.8	27
34	Molecular and metabolic changes in human liver clear cell foci resemble the alterations occurring in rat hepatocarcinogenesis. Journal of Hepatology, 2013, 58, 1147-1156.	3.7	26
35	Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget, 2017, 8, 73433-73447.	1.8	26
36	TEA Domain Transcription Factor 4 Is the Major Mediator of Yes-Associated Protein Oncogenic Activity in Mouse and Human Hepatoblastoma. American Journal of Pathology, 2019, 189, 1077-1090.	3.8	25

ANTONIO CIGLIANO

#	Article	IF	CITATIONS
37	Differential distribution of structural components and hydration in aortic and pulmonary heart valve conduits: Impact of detergent-based cell removal. Acta Biomaterialia, 2010, 6, 4675-4688.	8.3	24
38	Frizzled-10 Extracellular Vesicles Plasma Concentration Is Associated with Tumoral Progression in Patients with Colorectal and Gastric Cancer. Journal of Oncology, 2019, 2019, 1-12.	1.3	24
39	Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines <i>in vitro</i> and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8, 54149-54159.	1.8	24
40	Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death and Disease, 2018, 9, 31.	6.3	23
41	Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yesâ€Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans. Hepatology, 2021, 74, 248-263.	7.3	22
42	Distinct and Overlapping Roles of Hippo Effectors YAP and TAZ During Human and Mouse Hepatocarcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1095-1117.	4.5	21
43	Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis. International Journal of Molecular Sciences, 2020, 21, 8467.	4.1	20
44	MicroRNA-203 impacts on the growth, aggressiveness and prognosis of hepatocellular carcinoma by targeting <i>MAT2A</i> and <i>MAT2B</i> genes. Oncotarget, 2019, 10, 2835-2854.	1.8	18
45	Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget, 2017, 8, 90638-90650.	1.8	17
46	Oncogenic potential of N-terminal deletion and S45Y mutant β-catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer, 2018, 18, 1093.	2.6	17
47	Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer, 2019, 19, 343.	2.6	17
48	Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle, 2018, 17, 1496-1512.	2.6	14
49	Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques. Biochemistry Research International, 2012, 2012, 1-6.	3.3	13
50	Inhibition of MELK Protooncogene as an Innovative Treatment for Intrahepatic Cholangiocarcinoma. Medicina (Lithuania), 2020, 56, 1.	2.0	13
51	The Hippo Effector Transcriptional Coactivator with PDZ-Binding Motif Cooperates with Oncogenic β-Catenin to Induce Hepatoblastoma Development in Mice and Humans. American Journal of Pathology, 2020, 190, 1397-1413.	3.8	13
52	SNAI1 Promotes the Cholangiocellular Phenotype, but not Epithelial–Mesenchymal Transition, in a Murine Hepatocellular Carcinoma Model. Cancer Research, 2019, 79, 5563-5574.	0.9	12
53	Focal adhesion kinase activation limits efficacy of Dasatinib in câ€Myc driven hepatocellular carcinoma. Cancer Medicine, 2018, 7, 6170-6181.	2.8	11
54	MEK inhibition suppresses K-Ras wild-type cholangiocarcinoma in vitro and in vivo via inhibiting cell proliferation and modulating tumor microenvironment. Cell Death and Disease, 2019, 10, 120.	6.3	10

ANTONIO CIGLIANO

#	Article	IF	CITATIONS
55	The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	10
56	RASSF1A independence and early galectinâ€1 upregulation in PIK3CAâ€induced hepatocarcinogenesis: new therapeutic venues. Molecular Oncology, 2022, 16, 1091-1118.	4.6	8
57	Hepatocellular glycogenotic foci after combined intraportal pancreatic islet transplantation and knockout of the carbohydrate responsive element binding protein in diabetic mice. Oncotarget, 2017, 8, 104315-104329.	1.8	7
58	CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. Journal of Experimental and Clinical Cancer Research, 2022, 41, 65.	8.6	7
59	The Epidermal Growth Factor Receptor (EGFR) Inhibitor Gefitinib Reduces but Does Not Prevent Tumorigenesis in Chemical and Hormonal Induced Hepatocarcinogenesis Rat Models. International Journal of Molecular Sciences, 2016, 17, 1618.	4.1	4
60	Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1. DNA Repair, 2019, 82, 102687.	2.8	4
61	Nuclear localization dictates hepatocarcinogenesis suppression by glycine N-methyltransferase. Translational Oncology, 2022, 15, 101239.	3.7	4
62	Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism. Molecules, 2020, 25, 4141.	3.8	3
63	Current challenges to underpinning the genetic basis for cholangiocarcinoma. Expert Review of Gastroenterology and Hepatology, 2021, 15, 511-526.	3.0	3
64	Evaluation of human serum albumin sulfhydryl groups oxidation in plasma and atherosclerotic plaque extracts. Journal of Biological Research (Italy), 2010, 83, .	0.1	0
65	Glycosaminoglycans and Fabry's disease. Journal of Biological Research (Italy), 2010, 83, .	0.1	0
66	Quantification of liver proton-density fat fraction in 7.1T preclinical MR systems: Impact of the fitting technique. Journal of Magnetic Resonance Imaging, 2016, 44, 1425-1431.	3.4	0
67	A novel preclinical model of cholangiocarcinoma based on human aberrant FBXW7 expression Journal of Clinical Oncology, 2019, 37, e15624-e15624.	1.6	0