Linyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461899/publications.pdf

Version: 2024-02-01

20	781	14	20
papers	citations	h-index	g-index
20	20	20	1113
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides. Physical Review B, 2022, 105,	3.2	9
2	Floquet band engineering and topological phase transitions in 1T' transition metal dichalcogenides. 2D Materials, 2022, 9, 025005.	4.4	4
3	Two-dimensional oxygen functionalized honeycomb and zigzag dumbbell silicene with robust Dirac cones. New Journal of Physics, 2021, 23, 023007.	2.9	2
4	Structural phase transition in monolayer gold(I) telluride: From a room-temperature topological insulator to an auxetic semiconductor. Physical Review B, 2021, 103 , .	3.2	10
5	PAI-graphene: A new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones. Carbon, 2020, 170, 477-486.	10.3	42
6	Monolayer 1T-LaN2: Dirac spin-gapless semiconductor of $\langle i \rangle p \langle i \rangle$ -state and Chern insulator with a high Chern number. Applied Physics Letters, 2020, 117, .	3.3	17
7	The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers. Applied Physics Letters, 2020, 116, .	3.3	18
8	Two-Dimensional Square-A $<$ sub $>$ 2 $<$ /sub $>$ B (A = Cu, Ag, Au, and B = S, Se): Auxetic Semiconductors with High Carrier Mobilities and Unusually Low Lattice Thermal Conductivities. Journal of Physical Chemistry Letters, 2020, 11, 2925-2933.	4.6	40
9	New nanoporous graphyne monolayer as nodal line semimetal: Double Dirac points with an ultrahigh Fermi velocity. Carbon, 2019, 141, 712-718.	10.3	42
10	Quantum anomalous Hall effect in a stable 1T-YN ₂ monolayer with a large nontrivial bandgap and a high Chern number. Nanoscale, 2018, 10, 8153-8161.	5.6	35
11	Topological Dirac semimetal phase in Ge <i>x</i> Sn <i>y</i> alloys. Applied Physics Letters, 2018, 112, .	3.3	10
12	Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators. Nano Research, 2017, 10, 2168-2180.	10.4	18
13	New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings. Physical Review B, 2017, 96, .	3.2	15
14	Strain-driven band inversion and topological aspects in Antimonene. Scientific Reports, 2015, 5, 16108.	3.3	203
15	Dumbbell stanane: a large-gap quantum spin hall insulator. Physical Chemistry Chemical Physics, 2015, 17, 16624-16629.	2.8	25
16	Giant Topological Nontrivial Band Gaps in Chloridized Gallium Bismuthide. Nano Letters, 2015, 15, 1296-1301.	9.1	92
17	Driving a GaAs film to a large-gap topological insulator by tensile strain. Scientific Reports, 2015, 5, 8441.	3.3	55
18	Hydrogenation-induced large-gap quantum-spin-Hall insulator states in a germanium–tin dumbbell structure. RSC Advances, 2015, 5, 72462-72468.	3.6	12

LINYANG LI

#	Article	IF	CITATION
19	Structures, Energetics, and Electronic Properties of Multifarious Stacking Patterns for High-Buckled and Low-Buckled Silicene on the MoS ₂ Substrate. Journal of Physical Chemistry C, 2014, 118, 19129-19138.	3.1	76
20	First-principles identifications of superstructures of germanene on $Ag(111)$ surface and h-BN substrate. Physical Chemistry Chemical Physics, 2013, 15, 16853.	2.8	56